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1. Introduction



1.1 Rubber Mixing Production Line

Rubber mixing (RM): crucial process where raw rubber is combined
with various additives. Such additives have distinct properties to achieve
desired tire performance.

Figure 1: 3D Representation of a monostep Michelin mixing line [1]
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1.2 Challenges: Mixing Quality Prediction

Via physics-based models is challenging [2]–[4] due to the:

• nonlinear and heterogeneous process.

• varying properties of input materials.
• evolution and degradation of mixing equipment.

Via data-driven methods, such as machine learning (ML), can capture
relationships between process variables and quality. However, such
methods in the rubber industry suffer from three main issues [5]–[7]:

• lack of insights into the underlying physical process.
• neglect of key process variables for the model.
• the lack of uncertainty quantification (UQ) providing reliability.
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1.3 The Proposed Data-Driven Approach

To overcome the aforementioned challenges in RM, we propose a
data-driven framework that:

• Employs novel feature selection and explainability to analyze
process-quality relationships.

• Incorporates critical process variables, including material
properties, environmental conditions . . .

• Delivers trustworthy predictions through conformal prediction
(CP) methods.
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2. Case Study



2.1 Rubber Mixing Process

Figure 2: Banbury mixer diagram [8]

Thermomechanical processing
occurs in the mixer. The entire
mixing process requires about 1
hour to complete.

Figure 3: Rheological curve [9]

At the end of the process, the
sub-quality (y) is measured through
heating and shear tests to assess
rheological properties [9], [10].
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2.2 Data Representation — Output Sub-quality

After collecting the sub-quality data, we can build a tabular dataset D.

D with n = 35,525 samples and d = 316 features.

D =
{

(X , y)
∣∣ X ∈ Rn×d , y ∈ Rn}
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Figure 4: Evolution of the output sub-quality over time
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2.3 Data Representation — Feature Groups

Process states (PS): physical properties related to the machines (e.g.
mixer’s internal pressure or rotor rotation speed) through 99 features.
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Figure 5: Evolution of one process state variable over time
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2.3 Data Representation — Feature Groups

Raw material quality (RMQ): properties of the input materials (e.g.
black carbon content) through 37 features.
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2.3 Data Representation — Feature Groups

Wheather conditions (WC): environmental conditions (e.g. ambient
temperature or humidity) through 22 features.
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Figure 5: Evolution of one wheather condition variable over time
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2.3 Data Representation — Feature Groups

Context: global and temporal information (e.g. campaign information)
via 4 features.
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Figure 5: Evolution of one context variable over time
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2.3 Data Representation — Feature Groups

Production recipe settings (PRS): parameters controlling the
production process (e.g. machines’ settings) through 154 features.
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Figure 5: Evolution of one production recipe settings variable over time [1]
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3. Methodology



3.1 An Explainable and Reliable Data-Driven Framework

Figure 6: A Framework for Offline Explainable and Reliable Monitoring.
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3.2 Ranked Feature Frequency Selection

Ranked Feature Frequency Selection (RFFS) is a two-step feature
selection method based on:

1. Feature Frequency Selection (FFS): Multiple feature selection via
recursive feature elimination (RFE) procedure [11], [12].

2. SHAP Feature Selection (SFS): Feature contribution and ranking
via SHAP values [13], [14].
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4. Results



4.1 Frequency-based Feature Selection

Figure 7: Feature frequency selection (FFS) histogram with 10 runs [1].
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Across 10 runs: 104 unique features; 66 in all runs, and 72 in at least
80% of runs. These 72 robust and reproducible features constitute the
reduced dataset D∗.
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4.1 SHAP-based Feature Selection

Figure 8: SHAP feature selection (SFS) validation.
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Across the 72 feature combinations, the best performance is achieved
with 58 features. These 58 ranked features are used to build the refined
dataset D+.
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4.2 Predictive Performance

Table 1: Comparison of ML model performance at each step of the method:
(i) initial dataset D with d = 316 features, (ii) reduced dataset D∗ with
K = 72 features, and (iii) further refined dataset D+ with ℓ = 58 features.

Dataset used
for model

development

ML model
performance

Improvement relative to
baseline (%)

MSE R2 MSE R2 No. of features

D (d = 316) 0.209 0.788 / / /
D∗ (K = 72) 0.174 0.824 17% 4.6% 77%
D+ (ℓ = 58) 0.173 0.824 17% 4.6% 82%

The two-stage process is effective, via (i) a feature reduction by 82% and (ii)
a predictive performance improvement with a MSE drop of 17% and a R2

score increase of 4.6%.
A more parsimonious model leads to better results.
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4.3 Model Explainability

Figure 9: SHAP dependency plot (DP) between data_118 and data_385.

1. data_118 below −0.75 boosts predictions, while higher values dampen them.
2. Low data_385 values occur only when data_118 is less than −1, indicating
a synergistic interaction.
It outlines how explainability can uncover hidden feature interactions.
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4.4 Uncertainty Quantification

Figure 10: SCP convergence graph of
the average empirical coverage C̄δ.
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coverage C̄δ converges to the true
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Figure 11: SCP testing uncertainty
estimates with δ = 0.9.
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SCP builds a constant uncertainty
estimate with a testing coverage
C t of 0.9009. Also, it maintains
narrow confidence intervals.
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5. Conclusion



5.1 Summary

Through feature selection (RFFS), explainability (SHAP), and
uncertainty quantification (SCP), our approach delivers benefits across
operational domains:

• Reduced testing costs and time (seconds vs. hours) by (i) prediction
accuracy enhancement (17% for the MSE) and (ii) trustworthy
uncertainty estimates (90% confidence interval) with theoretical
guarantees. It enables targeted and efficient laboratory sampling.

• Streamlined process management by identifying key variables (58
features with a 82% reduction) and providing interpretable
insights. It enables engineers to simplify and optimize control
strategies.
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5.2 Future Work

Looking ahead, our future work will focus on two main directions:

• Deeper theoretical and experimental analysis, and broader discussion
of the framework’s applicability and limitations will be addressed in a
journal paper extension [1].

• Continuous monitoring with adaptive uncertainty quantification in a
live manufacturing environment will be enabled by a transition to
online quality monitoring.
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5.3 FAQ

Thank you for your attention!

Questions?
• Corresponding author: Ahmed Shokry

ahmed.shokry@polytechnique.edu

• Presenting author: Louis Berthier
louis-desire-romeo.berthier@michelin.com

• Contributors: Eric Moulines, Sylvain Desroziers, Guillaume Ramelet
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FFS Algorithm [1]



SFS Algorithm [1]



SCP Algorithm [1]
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