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Abstract
QD algorithms are optimization algorithms that return a collection of solutions that are both optimal
and varied, unlike conventional optimization algorithms which return a single and unique solution.
This set of solutions enables the agent to adjust its behaviour in an environment to meet one or more
objectives under different constraints, in the most optimal way possible. Like most algorithms, these
face the problem of uncertain and noisy environments, which disrupt the evaluation of solutions and
their reliability. One proposal for limiting the impact of this uncertainty is to adapt sampling ap-
proaches to avoid lucky solutions, enhance their reliability, and bring them closer to the expected
ground truth solutions. Unfortunately, these algorithms are not very data-efficient by design and op-
eration, and adding sampling on top of them may increase performance in uncertain environments, but
it considerably reduces data efficiency. This research project focuses on the use of model-based meth-
ods coupled with sampling approaches within QD algorithms and uncertainty quantification to cope
with uncertain environments. The aim is, on the one hand, to enable the neural network to propose
robust and reliable solutions despite noise, and on the other hand, to improve the data efficiency of
QD algorithms by limiting solution evaluations across the environment. To this end, eight algorithms
are proposed in this research project. These contributions propose different combinations of three
mechanisms, namely: (1) a repertoire reset, (2) the model design and (3) a sampling method. The
performances of these algorithms are evaluated using a redundant robotic arm task, under determin-
istic and uncertain conditions, although the main environment of this project is the non-deterministic
one. These performances are compared with two baselines, MAP-Elites and MAP-Elites-Sampling.
The best-performing contribution beats the baseline established by MAP-Elites but performs slightly
worse than the second baseline defined by MAP-Elites-Sampling. However, the behaviour of the
model and the results associated with this best contribution are promising and demonstrate the value
of Model-Based Quality-Diversity algorithms with uncertainty quantification, especially in uncertain
environments.
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Chapter A

Introduction
This Individual Research Project represents a continuation of the Independent Study Option con-
ducted from January to May [1]. Thus, this master’s thesis focuses on enhancing QD algorithms,
particularly in uncertain environments, by combining such algorithms with both model-based and
sampling approaches to assess and use the uncertainty associated with the predicted solutions.

A.1 Motivation and Contribution

Optimization is the process of finding the most optimal solution to a given environment, task
and its associated objectives and constraints. From an industrial standpoint, this generally involves
maximizing yield and minimizing costs, although other criteria such as quality, safety, efficiency, and
numerous other considerations can also be addressed. Therefore, optimization is a key element in the
development of new products and the proposition of novel technologies and methods.

Diverging from classical algorithms like reinforcement learning (RL), quality-diversity (QD) algo-
rithms are optimization algorithms inspired by evolutionary algorithms (EAs). They return a col-
lection of solutions that must be both diverse, offering several approaches, and high-quality, to
effectively solve the problem at hand [2, 3]. Unfortunately, some of the environments in which QD
algorithms are applied are uncertain. Indeed, this uncertainty is a ubiquitous feature of the real
world, manifesting as measurement noise, incomplete information, external interference and other
relevant aspects contingent upon the environment under consideration [4, 5]. Such uncertainty im-
pacts algorithms, particularly in the evaluation of their solutions. Consequently, QD algorithms are
not immune to these undesirable effects and tend to be inefficient in uncertain environments [6].

This is where model-based (MB) approaches come in. They approximate the dynamics of the
environment through model learning. Such approaches aim to guide the agent according to the
information it receives as input and the plans predicted by the trained model. To tackle uncertain
environments, the goal is to combine QD algorithms with these MB approaches and quantify
the uncertainty of the obtained solutions. This quantification serves as guidance for the algorithm
and the agent during the simulation of the task at hand, avoiding unrepresentative solutions and
enabling the model to better capture the relationship between inputs and outputs [7, 8].

In chapter B, we recall the challenges of uncertainty in non-deterministic environments and review
the principle of QD algorithms. This chapter also presents MB approaches and various considerations
for using QD algorithms in an uncertain environment. Then, chapter C introduces the work proposed
in this research project, notably through a combination of 3 mechanisms that form 8 new methods for
dealing with a non-deterministic environment. Additional considerations are also introduced to ensure
the proper functioning and assessment of these algorithms, via new hyperparameters and metrics
respectively. Chapter D presents the redundant robotic arm task used to compare algorithms.
Chapter E presents the results via an ablation study, starting with an in-depth analysis of the most-
performing contribution. Finally, chapter F summarizes and discusses the proposed algorithms, before
exploring new perspectives to improve the approaches implemented through this research project.
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A.2 Social Stakes and Ethical Considerations

Concerning the ethical considerations surrounding this project, it is important to emphasize that it
is devoid of any involvement with humans or animals. This research project aims to improve QD
algorithms, particularly for uncertain environments. However, it should be noted that there is still a
significant amount of work needed before such contributions can be effectively applied in real-world
environments. Additionally, this project does not use any external data sources and does not possess
any military or hazardous social or environmental objectives. Instead, it focuses on the development
of a robotic application within simulated and non-real environments such as a simulated robotic arm.
Although robotics can be used for non-ethical purposes, this is not the case here, thanks to the envi-
ronments and tasks considered. Such working environments are accessible through the QDax research
framework. QDax is the result of a collaboration between InstaDeep and the Adaptive & Intelligent
Robotics Lab (AIRL) of Imperial College London. This framework serves research purposes and is
open-source, allowing users to freely access and utilize it. On the whole, this work is more theoreti-
cal. The aim is to improve the resilience and performance of algorithms in the presence of noise. The
final decision on how to apply the contributions introduced through this project rests with the man
himself. However, neither AIRL nor I have any intention of using the contributions proposed through
this project for purposes that might (1) endanger people or the environment, or (2) negatively impact
any other ethical considerations. As a result, the ethical integrity of the project is respected and it is
aligned with responsible research practices.
A checklist verifying potential ethical issues surrounding the project is available in appendix A.
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Chapter B

Literature Review - ISO Continuation
As emphasized in Chapter A, this Individual Research Project is a continuation of my previous work
conducted during my Independent Study Option. Therefore, this chapter draws on and contains in-
formation and references from the previous work. Although the content has been modified and para-
phrased to avoid self-plagiarism, the idea remains the same, resulting in an overlap in terms of the
background information between the two projects. Consequently, this section serves primarily as a
summary of the relevant literature from the ISO with additional information [1].

B.1 Uncertainty as a Key Challenge for Algorithms

QD optimization algorithms are used in a wide range of fields, including (1) video games for gen-
erating environments or agents [9, 10, 11], (2) robotics for controlling simulated or real agents [12,
13, 14], (3) industrial design, particularly in the context of fluid mechanics [15, 16, 17], (4) human-
robot communication in the same environment [18, 19], and many other and various domains [20].
These algorithms are designed for use in both simulated and real environments.

Unfortunately, such algorithms face a significant challenge: uncertainty. Indeed, although real en-
vironments are certainly more affected by this problem, simulated environments are not exempt. Un-
certainty can arise through several factors, such as (1) noise in the measurement of data or the
evaluation of solutions, (2) absence or lack of information, (3) parasitic external interference as
well as other factors more specific to the environment, as Fu et al. and Matott et al. pointed out [4, 5].
All these sources of uncertainty prevent the efficient use of conventional algorithms. Particularly
for classical QD algorithms, this uncertainty makes the evaluation of solutions inefficient and un-
reliable, as well as prevents proper evaluation of algorithms and methods through conventional
metrics [6, 21, 22, 23].

As reminded by Chua et al., this uncertainty can be divided into two categories: aleatoric uncer-
tainty and epistemic uncertainty. The former corresponds to data uncertainty and arises from
the inherent randomness of the environment within the data and observations. On the other hand,
epistemic uncertainty stems from a lack of data and information about the environment, and it is
also known as model uncertainty, as reminded by Chua et al. [24].
Abdar et al. conducted a review of uncertainty quantification (UQ) using deep neural networks (DNNs).
This review covers various aspects, including a comparison of uncertainty quantification methods and
their respective advantages and disadvantages [25]. They outlined that epistemic uncertainty can be
reduced through appropriate model selection and the availability of extensive and representative data
that adequately reflect the environment. Regarding aleatoric uncertainty, Abdar et al. underlined that
it is assumed to be irreducible since it is inherent in the observed data by definition [25]. Nonethe-
less, techniques have been developed to address this issue, such as the approach proposed by Sambyal
et al. in the medical field, which leverages data augmentation methods [26].
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The graph shown in figure 1 is inspired by figure 3 in the article by Tuna et al., which looks at attacks
on DNNs through the maximization of epistemic uncertainty [27]. It provides a visual summary of
the differences between these two types of uncertainty, as well as the associated levels depending on
the data available.

Figure 1: Graph showing uncertainties and the level associated with each, using fictitious data and
a fictitious model. The shaded areas [0;2], [4;6], and [8;10] in the environment have high epistemic
uncertainty due to the lack of observation data for model training. Red zone [2;4] has observation data,
but they deviate from the ground truth model, assuming noise or disturbances during measurement,
resulting in high aleatoric uncertainty. On the other hand, blue zone [6;8] has observation data that
closely match the reality and dynamics of the environment, resulting in low aleatoric uncertainty.

Thus, uncertainty manifests itself in two categories as described by equation B.1, and at several levels
depending on multiple factors such as the environment, the observed data or the selected model.

Total Uncertainty = Epistemic Uncertainty+Aleatoric Uncertainty (B.1)

Unfortunately, conventional QD algorithms like MAP-Elites were not designed for uncertain but for
deterministic environments in the first place, where a single solution evaluation yielded exactly the
ground truth solution [28]. As emphasized by Flageat et al., MAP-Elites is affected and sensitive
to noise by its elitism, which favours solutions with the highest fitness [6]. Consequently, a single
evaluation of solutions proves ineffective in uncertain environments and may be unrepresentative
of actual performance due to noise.

Therefore, researchers have been interested in developing methods to overcome this problem of un-
certainty. These include the following methods:

1. Corrected metrics, which are adapted to evaluate the actual performance of algorithms by
re-evaluating the solutions encountered [6, 21, 22, 23].

2. Sampling methods, which improve the evaluation of a solution by taking into account past
information via old evaluations, or additional information via re-evaluations [21].

3. MB methods, which quantify uncertainty to guide the algorithm and the agent [7, 8].

These methods will be discussed in sections B.3.1, B.3.2 and B.4.1 respectively.
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B.2 Deterministic Quality-Diversity Algorithms

QD algorithms are based on the theory of evolution, with the idea of a population evolving through
the selection of individuals, their descendants and the survival of the best-performing candidates over
time. Therefore, such algorithms are closely related to EAs, except that they consider additional cri-
teria in addition to the fitness of solutions, notably the behavioural descriptor (BD) [2, 3].
The advantages of these algorithms over RL algorithms are that (1) they provide a collection of the
most optimal solutions, unlike RL algorithms, which only suggest the single best-performing solu-
tion, and (2) QD algorithms can be applied to a wider range of environments, notably by considering
non-Markov Decision Processes (MDPs) frameworks.
Finally, these QD algorithms are also efficient because they can address optimization problems with
one or several objectives, depending on the task under consideration, the constraints imposed and
the expected behaviour.

B.2.1 Algorithmic Foundations: Principles and Operations

As emphasized by Cully et al., the objective function, f (θ), of QD algorithms is constructed from
two elements, namely (1) fθ the fitness, and (2) bθ the BD of the identified solution. The variable θ

represents the genotypes, or parameters, in the search space and depends on the task to be performed
and the environment. Several arrangements are proposed for these parameters to test several solutions
and identify the most promising ones [2].
As reminded by Chatzilygeroudis et al., the solutions are represented in the feature space, which cor-
responds to the projection of the scores associated with each of the solutions identified and retained.
The dimensions of this space depend intrinsically on the dimensions of the BD. In general, solutions
are represented through a 2D space where the BD corresponds to the position of one part of the agent.
Higher-dimensional spaces and BDs are possible depending on the task under consideration, but vi-
sually it becomes impossible to interpret for a space of dimension greater than 3. Finally, this feature
space also contains the performance attached to each solution through its fitness, which is expressed
through a colour bar established by the set of fitnesses stored in this space [3].
Finally, unlike the BD, fitness is represented by a single value. The latter assesses the effectiveness
of the corresponding performance of the solution, whereas the BD provides insight into how this
solution accomplishes its performance [2, 3].

Cully et al., and Chatzilygeroudis et al. highlighted multiple criteria for modifying QD algorithms
and evaluating their performance, specifying the benefits of each method [2, 3]:

1. Container: It stores the different solutions according to the BD and the associated score.
It also associates the solution with its genotype, to identify the combination that produced the
result and provide it to the user. There are two types of containers: the Grid and the Archive,
which are respectively discretized and non-discretized containers. Unlike the Grid, where the
structure of the space is pre-defined by the user with a uniform division of each dimension of
the space, the structure of the Archive is derived directly from a distance threshold between the
BDs of the solutions generated and those stored.
Other strategies have been adopted to improve solution management and algorithm perfor-
mance, notably using the Centroidal Voronoi Tessellation construction highlighted by Vas-
siliades et al. This variation consists of dividing the Grid into regions whose shape and area
vary according to the dispersion of solutions in the feature space [29].
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2. Selection Operator: It chooses a group of individuals to serve as parents for a subsequent
mutation. Depending on the preferences of the user and what he wants to promote within
the algorithm, several operators are available: (1) random selection, which selects random
genotypes potentially not stored in the container, (2) uniform random selection, which chooses
individuals from the container with a probability inverse to the number of stored solutions,
(3) tournament selection, which compares candidates two by two and only the one with the
highest fitness is retained as a parent, (4) roulette wheel selection, where individuals have a
greater chance of being selected in proportion to their fitness, (5) rank selection where selection
probability is also determined based on the fitness, and a higher fitness corresponds to a higher
probability of an individual being chosen [30].

3. Alteration Operator: It modifies the parents selected with the previous operator to gen-
erate offspring, i.e. new solutions. Here are some of the most commonly used operators to
generate new genotypes: (1) mutation operator which introduces noise into the genotype of
each parent, (2) crossover operator which combines the information contained in the genotype
of two parents, (3) variation operator which is a combination of the two previous operators.

4. Comparison Score: It measures the performance of new solutions produced by the previ-
ous operator and compares them with those already stored in the container. Again, several
scores are applicable depending on what the user is trying to promote to solve the task, no-
tably: (1) the fitness score intrinsically linked to the task, which evaluates the performance of
a solution concerning the objectives and constraints, (2) the novelty score, which assesses the
difference of a solution to the others in the container by utilizing the average distance among
the k-nearest solutions as presented in equation B.2, (3) the curiosity score, which evaluates
the discovery of new solutions by introducing a positive reward if a solution is capable of gen-
erating offspring retained in the container and a negative reward otherwise.

Noveltyk(i) =
1
k

k

∑
n=1

d(i,sn) (B.2)

k : Number of nearest neighbours considered
d(i,sn) : Distance between the new individual i and the n-th closest solution sn in the container.

5. Metric: It does not measure the performance of the solutions, but that of the algorithm, to
compare the different methods proposed by the researchers. It is calculated from the container
and its chosen solutions, although it is not involved in the algorithm itself. The following
is a non-exhaustive list of metrics that can be considered to assess algorithms: (1) diversity
and coverage, which look respectively at the number and percentage of cells occupied by an
individual in the container, and measure the difference and diversity of the solutions between
containers as described in equations B.3 and B.4, (2) performance, through the mean, median
or maximum fitness of the solutions in the container, to evaluate their efficiency about the task
as denoted by the equation B.5, (3) convergence speed, which evaluates the number of environ-
ment steps needed to obtain a collection of solutions with a certain diversity and performance,
(4) QD score is calculated as the sum of the fitness values of all the individuals in the container,
considering both diversity and performance as shown in equation B.6.
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Diversity(C) = NC (B.3)

Coverage(C) = 100× NC

TC
(B.4)

Performance(C) = Ope
1≤n≤NC

( fn) (B.5)

QD Score(C) =
NC

∑
n=1

fn (B.6)

NC : Number of cells occupied by an individual in container C
TC : Total number of cells in container C
fn : Fitness of the n-th solution occupying a cell in container C

Ope : An operation such as max, median or mean

Although QD algorithms may change, they share the same idea of evolving a population, as introduced
in section B.2 and represented in the algorithm 1.

Algorithm 1 General Quality-Diversity Algorithm
Initialize randomly a container C
for Generation = 1 until Max Generation Gmax do

Select a population P (parents) from the container C using a selection operator
Generate new individuals I (offspring) from the population P using an alteration operator
for each individual i in I do

Evaluate the scores S(i), for instance fitness f (i) and behavioural descriptor BD(i) of individ-
ual i
if BD(i) is new then

Add individual i to the container C
else

if f (i) > f (old) then
Add individual i to the container C

else
Keep the old solution already stored in the container C and forget new individual i

return C

In conclusion, QD algorithms can be customized based on several criteria, and these choices
significantly influence their efficiency. They can be tailored to follow different philosophies, such
as prioritizing exploration for the discovery of new solutions and diversity or favouring exploitation
and quality to identify the most promising solutions. In general, QD algorithms seek a compromise
between the two to return multiple and different solutions, all of which are highly efficient.

This research project focuses on improving QD algorithms for uncertain environments. For the re-
mainder of this work, MAP-Elites (ME) algorithm is considered, presented in section B.2.2 and
modified to propose new approaches.
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B.2.2 A Classical Algorithm: MAP-Elites

MAP-Elites, proposed by Mouret et al., is referred to as an "illumination algorithm" returning "di-
verse and high-performing" solutions and is based on the NSLC algorithm introduced by Lehman
et al. [31]. It is elitist and particularly interested in obtaining solutions with the highest fitness for
each BD. Unlike NSLC, which has two archives and favours the diversity of solutions, MAP-Elites
seeks to fill its grid with solutions with the highest fitness [28].
It is depicted in figure 2 and inspired by figure 1 proposed by Berthier et al. [1].

Figure 2: Diagram illustrating the conventional loop of MAP-Elites. This algorithm involves the
following key steps: (1) initialize the feature space filled with a few solutions, (2) randomly select a
batch of genotypes from the container, (3) apply random variations to the previously selected batch,
(4) evaluate the scores of each individual in the altered batch, (5) compare BD and fitness, (6) delete
or add the new solution to the container according to the comparisons, (7) update the operators for the
algorithm and the metrics for the user. The next step is to repeat the loop with steps (2) to (7) for a
certain number of generations.

Although MAP-Elites is prone to certain problems, notably due to its elitism and low data efficiency,
it remains one of the most promising algorithms, with a mechanism that is simple and accessible to
understand. As a result, many researchers have turned their attention to this algorithm, proposing new
versions through the addition of new methods [29, 32, 33, 34, 35, 36, 37].

One of the most interesting versions for this research project is an approach where MAP-Elites in-
cludes solution sampling in its loop. This new algorithm, proposed by Justesen et al. involves re-
evaluating each solution many times to get an idea of its true performance [21]. It is important to note
that this variation only makes sense in the context of uncertain environments, as demonstrated by the
experiments carried out by Berthier et al. [1].
Indeed, re-evaluating a solution in a deterministic environment makes no sense, since by definition of
the environment, the solution obtained will always be the same. On the contrary, the re-evaluation of
a solution, potentially lucky because of the noise in an uncertain environment, leads to a new one.
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B.3 Uncertain Quality-Diversity Algorithms

In section B.1, it was noted that QD algorithms were originally not designed to handle uncertain envi-
ronments and are not effective in such conditions. As time went by, QD algorithms were democratized
and adapted to meet new requirements, particularly in real environments, where uncertainty is preva-
lent. Flageat et al. conducted a thorough examination of the application of QD algorithms in non-
deterministic environments and proposed a comprehensive framework for addressing the problem,
including a fair comparison of the different algorithms proposed. At the same time, they reminded
important concepts for dealing with noise and correctly evaluating both solutions and algorithms,
notably through sampling methods, corrected metrics and loss metrics [23].

Flageat et al. posed the problem as follows: since noise prevents a reliable and correct evaluation of
solutions, it is no longer possible to consider fixed values for both fitness and BD. Instead, they have
reframed the problem in terms of solutions whose fitness and BD follow individual distribution, with
each distribution having its mean and variance. In the deterministic case, the variance is zero [23].
Thus, as outlined by Flageat et al., two key challenges need to be addressed: (1) the performance of
each solution by evaluating the expected fitness and BD, and (2) reproducibility by quantifying the
variance of the fitness and each dimension in the BD. To obtain these measures, each solution must
be sampled several times. A desirable outcome is a solution with high expected performance and
low variance, indicating both high performance and reproducibility [23].
Finally, it’s worth mentioning that reproducibility cannot always be enhanced as it is contingent
upon the nature of uncertainty. In instances where noise arises from an external source and uniformly
affects all observed data, it becomes impossible to enhance reproducibility. However, if the uncer-
tainty is specific to particular components of the system, reproducibility can be improved by opting
for more robust and stable elements [23].

B.3.1 Emerging Insights for Uncertain Environments

The main way of dealing with uncertainty is through solution sampling, which attempts to evalu-
ate and approximate solutions as reliably as possible, taking into account additional information.
These sampling methods are discussed in section B.3.2. Unfortunately, not all algorithms use sam-
pling approaches and not necessarily the same ones. Consequently, algorithms are not necessarily
evaluated on the same basis, and this is one of the problems pointed out by Flageat et al. when
comparing different methods. To take re-evaluations into account and allocate the same resources
to each algorithm, they suggested the use of sampling size, the concept of which is presented in
equation B.7, instead of batch size [23].

Sampling Size (S) = Batch Size (B)×Number of Reevaluations (N) (B.7)

Although sampling is a method for limiting the effect of uncertainty, and sampling size provides a
basis for comparison between algorithms, it is not enough to have an idea of the actual behaviour and
efficiency of an algorithm applied in an uncertain environment. Corrected metrics demonstrated their
effectiveness in this context. Their calculation methods are identical to those of the metrics presented
in section B.2.1, except that instead of being calculated from a container, they are calculated from a
corrected container. The latter is simply a copy of the original container at the end of a generation,
also known as an uncorrected or illusory container, where each retained solution is re-evaluated
several times to approach its true fitness and BD value. It’s the same principle as sampling approaches,
except that this sampling is "external" to the algorithm and is not used by it. Like metrics, corrected
metrics are only there to inform the user, without intervening in the algorithm. This principle of
corrected metrics was put forward by Justesen et al. and taken up by other researchers [6, 22, 23].
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Thus, the idea is to take the mean obtained for each solution after a certain number of re-evaluations,
but other operations are possible, such as the median, recommended by Flageat et al. [23]. Depending
on the algorithms, the sampling process changes, as in Deep-Grid Map-Elites (DGME), and in this
specific case, the idea is not to take the average obtained after re-evaluations, but the average for
a certain number of solutions belonging to the same cell [6, 23]. Finally, new metrics, and indeed
corrected metrics, have been introduced, depending on the problem and performance sought, through
new implementations [6, 21, 22, 23].

Eventually, the last point outlined through the formalism proposed by Flageat et al. [23] are the loss
metrics, introduced by Flageat et al. [38]. These additional metrics emphasize the effectiveness
of algorithms in addressing the two presented challenges, performance and reproducibility. A
general example of a loss metric is given in equation B.8, and the aim is to reduce this loss as much
as possible [23].

LossMetric(C) =
Metric(C)−Metric(C)

Metric(C)
(B.8)

C : Container

C : Corrected Container

As with corrected metrics, metrics can be adapted to transform them into loss metrics [22, 23, 38].

B.3.2 Sampling Approaches as a Solution to Uncertainty

As mentioned in section B.3 and reiterated by Flageat et al., QD algorithms and their solutions must
consider not static values but distributions. Uncertainty makes it impossible to evaluate solutions
reliably and accurately through a single evaluation. Therefore, one way to address this is to combine
these algorithms with sampling approaches, the aim of which is to avoid random solutions by
considering additional information to approximate each solution as closely as possible [23].
The nature of this information also determines the type of sampling approaches to be used, i.e. (1)
explicit sampling or (2) implicit sampling. The first approach consists of creating additional in-
formation by re-evaluating a solution several times to determine the mean and variance of its dis-
tribution. In contrast, the second approach doesn’t seek to create information, but to take advantage
of information already encountered, storing it as the algorithm and agent evolve.

Some explicit sampling methods are considered to be sampling-based approaches, which by defini-
tion consider a small portion of the individuals and not the entire population to infer certain informa-
tion. One solution introduced by Cantu-Paz in the context of genetic algorithms is naive sampling.
This method, as its name suggests, is simple to understand and implement, but its inherent naivety can
quickly make it unsuitable in terms of available resources for problems where the environments have
complex dynamics and where evaluation is too costly [39]. This method is static by definition, since
the number of re-evaluations remains constant and identical for each solution, assuming a uniform
distribution of re-evaluations, which is not automatically valid in real and complex environments.
Moreover, as reminded by Cantu-Paz, uncertainty is lower as the standard deviation decreases, and
this decrease is proportional to the square root of the number of re-evaluations considered [39].
QD algorithms already perform poorly from a data efficiency aspect, and combining them with
naive sampling would only worsen this data inefficiency. Rakshit et al. compared different approaches
to improve or at least limit the lack of data efficiency of sampling methods. They highlighted the
benefits of adaptive sampling. Unlike naive sampling, adaptive sampling is dynamic and does not
assume a uniform distribution of solutions. It aims to modify the choice and reassessment of solutions
while taking into account the information obtained [40].
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Thus, the naive approach is simpler to implement and more effective in an environment where so-
lutions are assumed to be uniformly distributed, whereas the adaptive approach is more difficult to
implement but is more effective in terms of re-evaluation in environments where the population is
not uniformly distributed [39, 40]. Although these two approaches are too demanding in terms of
computing resources and inefficient in terms of data efficiency, researchers have proposed algorithms
whose sampling idea is based on them to cope with uncertainty [21, 23].

In contrast to explicit sampling, some implicit sampling methods are entitled population-based ap-
proaches. They consider the entire population, or at least a very large part of it, to obtain more
reliable estimates of the value of solutions despite the noise. These methods are intended to be faster,
as they do not involve re-evaluation, as demonstrated by the DGME algorithm proposed by Flageat
et al. [6]. This new version of MAP-Elites introduces a depth to each cell to store solutions. During
the evaluation, DGME will consider a local area of cells and associated solutions to approximate the
score of new solutions as reliably as possible. The fact that DGME uses the entire locally defined
population makes it a population-based method. This new mechanism with depth implies considering
(1) a new selection method for solutions and (2) a new addition method for solutions [6].
The performance challenge is addressed by the fact that DGME considers past information to reliably
estimate the scores of new solutions, as well as by the new selection mechanism, and the reproducibil-
ity challenge is addressed through the two new mechanisms. Similar to MAP-Elites, the process of
creating a new batch of parents involves randomly selecting a cell followed by a selection that is
proportional to the fitness of the solutions contained in this randomly chosen cell [28]. Finally, if a
cell is not fully occupied, new solutions can be added without any restrictions. However, once the
maximum capacity of a cell is reached, the fitness of solutions is no longer compared, deviating from
the approach used in MAP-Elites and shown in figure 2. In contrast, a random selection is made
within the selected cell to determine which old solution will be substituted for the new one. These
two mechanisms favour the solutions with the highest fitness and improve their stability by lim-
iting the impact of non-representative solutions. In conclusion, this algorithm is designed to be
"fast and stable" as outlined by Flageat et al., particularly in uncertain environments [6].

To summarize, population-based methods are ideal for tasks that necessitate a set of solutions ex-
hibiting great average performance, especially when evaluating individual solutions incurs significant
computational costs. Conversely, sampling-based methods demonstrate superior performance in tasks
where the evaluation of a single solution is expeditious and inexpensive, and the objective is to dis-
cover the most optimal solution [6]. Such results underline the significance of selecting the appropri-
ate approach, considering the environment, task requirements and computational resources.
Unfortunately, despite the effectiveness of combining QD algorithms with such approaches in the
context of uncertain environments, their applicability in real and complex environments is limited.
Such algorithms necessitate a significant amount of time and do not exhibit optimal data efficiency.
Consequently, it is crucial to explore new methods to address these challenges in non-deterministic
and complex environments. This is where MB approaches become valuable, as they aim to enhance
both the identification of distributions and their parameters through input-output relationships, as
well as data efficiency.
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B.4 Model-Based Strategies

Developing an agent and its interactions with a specific environment is both a time-consuming and
tedious process. In addition, this approach severely limits the ability of the robot to interact with
other environments, since it will only be effective for the environment on which the specifications
depend. As a result, this method is unviable for requirements where the aim is to enable the robot to
adapt multiple behaviours depending on its state and the environment. There is a real growing need
for robots capable of autonomous exploration and task-solving. One solution is the utilization of MB
approaches, which involve training the agent to capture the underlying dynamics of an environment.

These MB strategies allow the agent to gain knowledge from limited experience to train the model
and be as close as possible to the dynamics of the environment. Once properly trained, it can be used
to plan and simulate scenarios through sequential agent actions. To do this, the model estimates
transitions and expected rewards by approximating the dynamics of the environment.
These strategies aim to capture the relationship between input and output to generalize and extend
estimates from limited experience, resulting in a data-efficient method. Furthermore, acquiring a
model enables robots to make decisions that span extended planning horizons, resulting in enhanced
decision-making, particularly in challenging environments as emphasized by Swazinna et al. [41].
Nevertheless, the implementation of MB methods can be challenging and might not be appropriate
for environments with highly intricate dynamics.
Another benefit of MB learning is its potential for transferability. In the presence of knowledge about
a comparable environment, a trained model can be repurposed and further trained to tackle new
and different tasks. This knowledge transfer improves data efficiency and minimizes the training
time required to adapt a robot to a different environment, as outlined by Yao et al. [42].

In section B.4.1, the benefits of such strategies will be studied in the context of QD algorithms, before
turning to the use of such approaches for UQ in section B.4.2.

B.4.1 Leveraging Model-Based Approaches in Quality-Diversity Algorithms

QD algorithms aim to return a collection of solutions, both "diverse and high-performing" [2, 3]. This
collection translates into a discretized container. The interest of MBQD approaches is to generalize
this discrete space to a continuous space, accurately approximating the dynamics of the environ-
ment.
Several methods have been explored to generalize this discrete space: (1) the training of surrogate
models to simplify the expected model in complex environments and alleviate the computational bur-
den and time constraints [43], (2) the use of a Generative Adversarial Policy Network which con-
fronts a generator with a discriminator to produce policies from the continuous latent space once the
generator has been correctly trained [44], (3) an upgraded version of MAP-Elites involving Bayesian
Optimization and Gaussian Processes (GPs) as models, which are trained based on the last container
produced to select the most interesting solutions in the classical MAP-Elites loop [12, 45], and (4)
locally approximate with a linear function the objective function associated with the task to be
solved for each solution identified, enabling the application of numerous gradient descent steps
and leading to more promising solutions before adding them to the container [46].

The generalization offered by these MBQD approaches should make it possible, firstly, to improve
and reliably ensure the predictions made by the model for both explored and unexplored regions,
and secondly, to improve the data efficiency of the algorithms. In recent times, there has been an
increasing emphasis on utilizing surrogate models, as suggested by the work of Tabatabaei et al. and
Kent et al., to effectively represent complex environments with greater simplicity [43, 45].
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Keller et al. have proposed M-QD, which consists of using a surrogate model after training and up-
dating it [47]. This model estimates the score of each solution and calculates the distance associated
with the nearest neighbours to filter new solutions. According to the conditions and thresholds for
BD and quality respectively, solutions are dropped or added to the container, depending on whether
they contribute to the development of diversity or quality [28]. This algorithm is intended to be more
data efficient thanks to the use of this model and filtering steps, which prevent unnecessary solutions
evaluation. One issue is that this model is trained with the genotype of the solutions as input, which
prevents it from being transferable to another task [47].
To make the model transferable to other tasks, Lim et al. proposed DA-QD, which uses a model
whose inputs correspond to variables belonging to the state-action space and not to the geno-
type space. More precisely, this algorithm alternates between (1) learning a model through a group
of non-deterministic NNs and (2) operating QD to generate a collection of solutions. First, the model
is trained based on transitions contained in a replay buffer. Then, this model is used to estimate solu-
tions and fill a container belonging to the "imagination", thus conducting QD in imagination. Finally,
the agent acts in the environment to fill the original container, not the imaginary one, with the most
promising solutions from the imaginary container. These solutions are chosen based on the uncer-
tainty associated with them and quantified by the set of NNs [24]. In the end, the simulation of QD
in imagination improves data efficiency since evaluation by the model in imagination is less costly
than evaluation where the agent acts in the environment [48].
Finally, one of the last approaches is GDA-QD, proposed by Lim et al. [49]. This algorithm is an im-
proved version of DA-QD and introduces a new NN, a critic, in the non-imaginary part of DA-QD.
DA-QD provided good exploration and was more data-efficient than M-QD, but its exploitation was
not optimal [48]. The role of this critic is to improve exploitation by perturbing a certain proportion
of the solutions chosen to act in the real world with policy-gradient (PG) updates. Unlike random and
undirected perturbations (GA) in imagination, which promote exploration, PG updates are objective-
centred and improve exploitation by converging on the most encouraging solutions. The balance
between the two categories of updates makes it possible to get the best of both worlds, with good
exploration and good exploitation at the same time, resulting in an even better algorithm from a
data efficiency point of view [49].

As a final point, MB strategies provide significant benefits by utilizing models that continuously learn
from encountered data. As opposed to sampling approaches, MB strategies retain observed data to
enhance the model and its performance during exploration and exploitation. This not only improves
generalization but also strengthens the data efficiency of algorithms.
Consequently, an interesting idea on which this research project is based is to use MB strategies to
quantify the uncertainty of the solutions generated and to merge such approaches with QD algorithms.
The aim is to improve the capture of distributions and the relationship between inputs and outputs
despite the noise, to properly guide the agent and the algorithm, and to improve data efficiency,
particularly in uncertain environments.

B.4.2 Enhancing Robustness via Uncertainty Quantification

As a reminder of the section B.1, two types of uncertainty need to be considered: the epistemic un-
certainty resulting from the model and a limited understanding of the environment, and the aleatoric
uncertainty emerging from observation data and therefore inherent to the environment [24].
MB approaches can quantify both uncertainties. From a general perspective, aleatoric uncertainty
is identified through the entropy of probabilistic NNs or the incorporation of a non-deterministic el-
ement such as Gaussian noise, while epistemic uncertainty is characterized by the standard deviation
associated with model predictions [24, 25, 50, 51].
Thus, an overall method for improving QD algorithms via UQ using MB approaches can be outlined
as follows: (1) specify the environment, the task and its constraints, as well as the comparison met-
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rics, (2) train a model sufficiently to approximate the dynamics of the environment, (3) quantify
the uncertainty of the model predictions, and (4) guide QD algorithm for both exploration and ex-
ploitation via the uncertainty associated with the solutions.
Regarding the second point, model selection is variable. Numerous researchers have looked into this
question and proposed various models, including:

1. Probabilistic NNs

• Bayesian Neural Networks (BNNs): They merge Bayesian inference and NNs. They
quantify epistemic uncertainty via network parameters, and they calculate aleatoric uncer-
tainty from the distribution of the predictions based on the posterior distribution over the
parameters. Then uncertainty is used to sort and select the best solutions [52, 53].

• Gaussian Processes (GPs): These are non-parametric models that adapt their number of
parameters according to the data available and become costly as the size of the training
data expands. They quantify aleatoric uncertainty via the variability intrinsic to the input
data, and epistemic uncertainty through the uncertainty present in the intrinsic function
that produces the observation data [12, 24, 45].

• Generative Adversarial Policy Network (GAPN): It has two parts as introduced in sec-
tion B.4.1, namely a generator and a discriminator. Epistemic uncertainty is derived from
the parameters of the generator and the aleatoric uncertainty arises from the inherent ran-
domness of the environment, reflected in the outputs of the generator [44].

• Variational Auto-Encoders (VAEs): Like GAPN, they are generative models with two
elements, an encoder that reduces input data into a lower-dimensional latent space, while
the decoder reproduces the original inputs from this latent space. The encoder enables the
estimation of epistemic uncertainty through parameters of the learned posterior distribu-
tion. Conversely, the decoder network allows for the quantification of aleatoric uncertainty
by examining the distribution of reconstructed samples it generates [54, 55, 56].

2. Set of models

• Implicit: It involves training only a unique model with a constant number of shared pa-
rameters. The main idea is to apply the model several times to a prediction to obtain a
set of values. From this set, it is possible to deduce the distributions followed by each
solution and more precisely, the standard deviation, to rank them according to the degree
of epistemic uncertainty and select the most reliable ones [51].

• Explicit: It requires training multiple models where the number of parameters is linearly
proportional to the number of models. The idea is the same as that of implicit ensem-
bles, except that distributions are built on the basis of the predictions of each model in
this explicit ensemble, instead of applying a model several times and comparing its own
predictions [24, 57].

In conclusion, each model has its own set of advantages and disadvantages, varying in terms of ease
of training, implementation simplicity, and suitability for modelling the dynamics of the environment.
One of the most common approaches to estimating epistemic uncertainty via model parameters is the
Monte Carlo dropout. Finally, users have multiple options in the model selection and construction
process, which are influenced by their preferences, the overall problem specification and available
computational resources.
As a new approach, it could be interesting to combine MBUQ with sampling methods whose condi-
tions would be based on uncertainty levels. The idea would be, depending on the uncertainty thresh-
olds, to force the model to re-evaluate solutions and ensure certain reliability of estimates.
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Chapter C

Design and Contribution
As presented in section B.4.1, the main idea behind an MB version of QD algorithms is to enable the
model to capture the relationship between the inputs and the outputs despite noise. The second
objective, through the use of a trained model, is to improve the data efficiency of MBQD algorithms.
This research project proposes 8 new algorithms. As a reminder, the following algorithms are in-
spired by and use the QDax library, which is available and open-source [58].

The new contributions build on the work of Kent et al., Keller et al. and Lim et al. with initial MBQD
approaches [45, 47, 48]. Thus, the model-based approaches proposed through this project seek to
identify and approximate the link between a genotype and the scores of a solution, so the fitness
and BD, coming closer to M-QD than DA-QD [47, 48]. Firstly, the idea is to compare performance
by combining these MBQD algorithms with two sampling approaches: (1) an implicit approach that
consists of accumulating a huge number of solutions to train the model, inspired by the way DGME
works [6], and (2) an explicit approach which considers a smaller set of solutions where each of
them has been re-scored several times and is, therefore, more reliable, as in ME-Sampling [21, 39].
Then, for each of these two algorithms, an additional version is proposed to compare (1) a deter-
ministic model which predicts the value of the scores, and therefore of the fitness and BD, and (2) a
probabilistic model which predicts the parameters of a Gaussian distribution linked to each score, as
proposed by Chua et al., thus quantifying the uncertainty of the solutions [24].
Finally, for each of these four new implementations, the possibility of resetting the repertoire is stud-
ied, leading to (1) a classic approach with no repertoire reset, and (2) an approach where the reper-
toire is emptied after each model training and solutions are re-evaluated by the model. This second
version is inspired by the work of Lim et al. with DA-QD and the management of an imaginary
archive and another real archive, although the objective is different [48].
To sum up, here are the 8 new contributions proposed and studied in this project [47, 48]:

1. Model-Based MAP-Elites Explicit (MBME Explicit) [21, 39].

2. Model-Based MAP-Elites Wipe Explicit (MBMEW Explicit) [21, 39, 48].

3. Model-Based MAP-Elites Implicit (MBME Implicit) [6].

4. Model-Based MAP-Elites Wipe Implicit (MBMEW Implicit) [6, 48].

5. Model-Based MAP-Elites Uncertainty Quantification Explicit (MBMEUQ Explicit) [21,
23, 24, 39].

6. Model-Based MAP-Elites Uncertainty Quantification Wipe Explicit (MBMEUQW Explicit)
[21, 23, 24, 39, 48].

7. Model-Based MAP-Elites Uncertainty Quantification Implicit (MBMEUQ Implicit) [6, 23,
24].

8. Model-Based MAP-Elites Uncertainty Quantification Wipe Implicit (MBMEUQW Implicit)
[6, 23, 24, 48].
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Wipe (W) indicates that the algorithm uses the repertoire reset and Uncertainty Quantification (UQ)
indicates that the algorithm uses the probabilistic model for its predictions.

Although there are variations in these algorithms, they are all based on the same principle of training
a model during simulation, and using it instead of the intrinsic scoring function of the environ-
ment to evaluate solutions and potentially add them to the repertoire.
This MBME process is illustrated in figure 3 and described in algorithm 2.

Figure 3: Diagram depicting the main loop of MBME algorithm after initialization. The idea is to
alternate between (1) training a model from a batch of genotypes and their associated scores stored in
a buffer D , and (2) performing MAP-Elites from the solutions predicted by the model and filling the
container accordingly. The solutions stored in the buffer D come from the evaluation of the genotypes
with the scoring function of the environment.

The addition mechanism in the container for MBME remains the same as for ME described in algo-
rithm 1 and figure 2 [28]. There is a first condition on the occupation of the BD and a second one
on the fitness value of the new solution compared to the old one already stored in the container.
Moreover, a first-in-first-out (FIFO) buffer D fed by scoring function evaluations constitutes a
training and test dataset, Dtrain and Dtest , for the model. At the beginning, the model is not trained
and the buffer has not accumulated any data, so the container is filled with scores obtained via the
scoring function and not the model. Following the first training of the model, the scoring function is
used only to feed the buffer, while the model is used to fill the container.
Finally, the model is trained with a certain update frequency after the first training generation to give
the buffer D time to accumulate new data.

The use or non-use of the repertoire reset has no effect on either model predictions or training data.
On the other hand, the sampling approach and model type do have an impact on model training,
as shown in table C.0.1.
Indeed, since all algorithms are compared with the same sampling size, defined by equation B.7 and
shown in table D.0.1, reevaluations in the case of the explicit algorithms have two consequences: (1)
the genotypes batch is 8 times smaller than in the implicit case, and (2) the scoring function gives
access to uncertainty through the standard deviations of fitness and BD [23].
In addition, the type of model used modifies the predictions associated with the evaluation of a solu-
tion, enabling uncertainty to be quantified or not.
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Design
MBME Algorithms

Explicit UQ Explicit Implicit UQ Implicit

Scoring Function Version sampling classical
Number of Evaluations 8 1

Scoring Function Predictions
f itness, σ f it fitness
BDx, σBDx BDx
BDy, σBDy BDy

Model Predictions
fitness f it, log(σ f it) fitness f it, log(σ f it)
BDx BDx, log(σBDx) BDx BDx, log(σBDx)
BDy BDy, log(σBDy) BDy BDy, log(σBDy)

Table C.0.1: Design of the various MBME algorithms, where k represents the mean of element k and
σk the standard deviation of the same element. The version of the algorithms with container reset
retains exactly the same characteristics as without reset.

Now that the algorithms and the ideas behind their design have been presented, it’s important to look
at the uncertainty quantification introduced in section C.1, the hyperparameters used and presented in
section C.2, and the performance assessment developed in section C.3.

C.1 Design of the Neural Network and Quantification of the Un-
certainty

MBME and MBMEUQ algorithms rely on the use of a model to approximate the dynamics of the
environment and evaluate solutions for potential addition to the container. Here, the model is repre-
sented by a NN and, more precisely, by an MLP. The task of the NN is straightforward since it involves
a linear regression with a batch of genotypes as input, to predict the score of solutions. According
to table C.0.1, the models offer different outputs depending on whether they quantify uncertainty or
not. These two types of models, deterministic or probabilistic, are displayed in figure 4.

Figure 4: Representations of the NNs used for the MBME (left) and MBMEUQ (right) algorithms,
respectively deterministic and probabilistic. Models have (1) an input size of 8 corresponding
to the DoFs, (2) fully connected hidden layers of various sizes, and (3) an output of size 3 or 6
respectively for MBME and MBMEUQ algorithms.
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These representations come from the tool implemented by LeNail to visualize NNs in several formats
[59]. The size of the input element corresponds to the DoFs indicated in table D.0.1, and the output
element corresponds to the solution’s scores. These scores are of dimension 3 if the model is deter-
ministic and only interested in solution values (MBME), or of size 6 if the model is probabilistic,
quantifies uncertainty and seeks to identify the parameters of each Gaussian distribution asso-
ciated with a solution (MBMEUQ) as described in table C.0.1.

Since the type of prediction varies according to the choice of algorithm, the model does not use the
same loss for training. For MBME algorithms, the model is trained using Mean Squared Error
(MSE), while MBMEUQ algorithms use Negative Log-Likelihood (NLL) for training. These losses
are detailed in equations C.1 to C.4, and the objective for the model is to minimize them.
Also, to limit overfitting and improve model training, an L2 regularization term is added to the
previous losses to form the Training Loss shown in equation C.5.

L Score
MSE (x,y) =

1
|B|

|B|

∑
i=1

(
xScore

i −yScore
i

)2
(C.1)

L Total
MSE = L Fitness

MSE +L BDx
MSE +L

BDy
MSE (C.2)

L Score
NLL (x,y) =

1
2

|B|

∑
i=1

[
log(2π[elogσ(xScore

i )]2)+

(
yScore

i −µ(xScore
i )

elogσ(xScore
i )

)2]
(C.3)

L Total
NLL = L Fitness

NLL +L BDx
NLL +L

BDy
NLL (C.4)

L Training =

{
L Total

MSE +α ∑
K
n=1 β 2

n if MBME Algorithm
L Total

NLL +α ∑
K
n=1 β 2

n if MBMEUQ Algorithm
(C.5)

B : Batch of individuals considered for the training
α : Regularization weight, indicated as L2 Rate

βn : Value of the n-th model parameter
K : Number of model parameters

xScore
i : Model prediction for the i-th individual and corresponding score

yScore
i : Environment evaluation for the i-th individual and corresponding score

logσ(xScore
i ) : Model log std prediction for the i-th individual and corresponding score

µ(xScore
i ) : Model mean prediction for the i-th individual and corresponding score

Adding the exponential so that the model predicts the logarithm of the uncertainty instead of the
uncertainty limits numerical instabilities. As a result, the model trains better.

The different algorithms allow a comparison of approaches that do or do not capture the uncertainty
associated with the solutions, notably through the use of NLL to generate the standard deviation of the
distribution of each solution. This quantified uncertainty does not present a clear separation between
the aleatoric and epistemic aspects. This uncertainty is a mix of these two types of uncertainty,
the proportions of which we don’t explicitly know.
It’s also important to note that the aleatoric uncertainty is not the same between explicit sampling
and implicit sampling since the latter considers the direct distribution of individuals since there are
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no re-evaluations, whereas the former proposes a new distribution obtained through re-evaluations
and the average of several individuals.

In conclusion, the algorithms do not explicitly take advantage of this uncertainty. It is quantified,
gives the user an idea of the model’s performance, and the model implicitly takes advantage of it
when training and adjusting its parameters. However, apart from this implicit aspect and the metrics,
uncertainty is not explicitly re-used in the algorithm to find new or more promising solutions.

C.2 Hyperparameters Selection

The training of a model and therefore the identification and selection of its hyperparameters are key
elements in (1) proposing appropriate training and (2) ensuring correct and reliable predictions,
whose error in comparison with the environment and the scoring function is low.
However, there are many hyperparameters and adjusting each of them is no easy task, especially
when the algorithms propose different approaches, whether via training data or the training itself,
notably with the loss used as described in section C.1. Moreover, the algorithms have to contend with
two environments: the deterministic arm and the uncertain arm. When searching for hyperparameters,
a trade-off was sought to maximize results in both environments. On the other hand, if no trade-
off was possible, the uncertain environment was favoured since this project is mainly concerned
with the use of MBQD approaches for non-deterministic environments.

The proposed contributions are designed to use the scoring function to feed both the buffer and the
container for a certain number of generations, before using only the model to fill the container after an
initial training. Such a design requires the consideration of new hyperparameters used and represented
in equations C.6 and C.7.

Model Training Frequency: MTF =
FTG

2
(C.6)

Buffer Size: DSize =
1

1−PODR
×MTF×BS (C.7)

FTG : First Training Generation
PODR : Percentage of Old Data Retained

BS : Batch Size

FTG represents the generation at which the model trains for the first time and the scoring function
ceases to be used to feed the container. MTF indicates the frequency, in terms of generations, at
which the model trains throughout the entire simulation. Finally, PODR allows a percentage of the
old data stored in the buffer to be retained for the next time the model is trained.

When designing an algorithm, the question arises as to how many times solutions should be evaluated
by the environment, to ensure a fair comparison between algorithms. Because of reevaluations,
this is where sampling size comes into play [23]. However, these new MBQD algorithms no longer
use the environment to fill the container. The advantage in addition to the robustness of predictions
against noise is to improve data efficiency by proposing solutions predicted by the model and not by
the environment scoring function. This difference may not be obvious for simulated environments
such as the robotic arm, but it becomes relevant when the environment is real and the agent has to
interact physically and move around in the environment [1, 60].
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Therefore, when evaluations are done by the model and not by the environment, it was decided to
apply a batch size comparison rather than a sampling size comparison. This approach is justified by
the fact that it seems fairer, especially when comparing implicit and explicit approaches to sampling.
The model predicts several solutions corresponding to the initial design of the algorithm, through the
presence or absence of sampling for solutions.
Establishing a sampling size comparison for the model would force explicit algorithms to predict 8
times as many solutions as they currently do, to match the number predicted by implicit algorithms.
This would increase the cost in time and computational resources, and above all, it would break
down the idea of equitable comparison. Without this fair comparison, explicit algorithms would
offer as many solutions as implicit ones while benefiting from training with theoretically more reliable
solutions, particularly in uncertain cases thanks to reevaluations.

Although the model uses inputs proportional to batch size and not sampling size, to ensure a fair com-
parison between the explicit and implicit approaches, it is important to consider the comparison
between using the model and using the scoring function. Indeed, the model is by definition more
data-efficient than the scoring function of the environment. Thus, an evaluation using the model can
be considered "free" and is not equivalent to an evaluation by the scoring function. This notion
of equivalence and fairness between the model and the scoring function requires the consideration of
a new hyperparameter, namely the number of subdivisions.
In this project, several arbitrarily chosen values were tested to compare the performance of the differ-
ent algorithms. A more appropriate approach would be to measure how much time and computational
resources the scoring function requires to evaluate a batch of solutions, measure these same quantities
for the model and deduce proportionally the maximum number of batches a model can use to equal the
resources consumed by the scoring function. Finally, this hyperparameter represents the maximum
number of solution batches that the model can evaluate, to approximate the resources used by
the scoring function to evaluate one batch of solutions.

In addition to the hyperparameters specific to these contributions, other more general hyperparameters
have also been studied to improve training. All the hyperparameters and the values used by each of
the 8 algorithms are presented in table C.2.1.

Hyperparameters
MBME Algorithms

Explicit Implicit UQ Explicit UQ Implicit

Loss MSE NLL
Batch Size (BS) 64 512 64 512

Inputs Dimensions (BS,8)
Outputs Dimensions (BS,3) (BS,6)

Fully Connected Hidden Layers Size (64,32,16) (32,16,8) (64,32,16) (16,16,16)
Optimizer Adam

Learning Rate 7e−3 1e−4 7e−3 5e−3
L2 Rate 1e−6

Number of Epochs 125 175 225
First Training Generation (FTG) 1000 500 1000 500

Percentage of Old Data Retained (PODR) 20% 80% 20% 40%

Number of subdivisions
30 5 30 5
30 5 100 100

Table C.2.1: Set of hyperparameters considered for the model of each MBME algorithm. Algorithms
with repertoire reset have the same hyperparameter values as their version without repertoire reset,
except for the number of subdivisions. Shaded cells correspond to hyperparameters of algorithms
with repertoire reset.
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The first 4 hyperparameters defined in table C.2.1 are imposed either by (1) the hyperparameters
of the QD algorithms described in table D.0.1 and derived from the environment and configuration
presented in chapter D or by (2) the design of the model quantifying or not the uncertainty de-
scribed in table C.0.1 and section C.1. The rest of the hyperparameters have been determined through
the state-of-the-art and several comparisons of simulations in an uncertain environment.
Right from the start, the Adam optimizer is used. Even if other optimizers exist, it is one of those
that works best throughout the literature, as well as several personal projects. On top of that, it offers
an adaptive individual learning rate for each model parameter and optimizes each of them [61].

It’s not easy to combine all these hyperparameters and find the best possible combination, all the more
so when we consider the search for 8 different algorithms and each hyperparameter has a fairly large
set of values. Therefore, multiple orders of magnitude were estimated from a few test simulations
or from the literature to restrict these sets of values and explore fewer combinations.
These initial estimates seemed interesting, except that in reality the model was underfitting, not al-
lowing for sufficiently interesting learning. The main cause of this underfitting was the complexity of
the model via the number of hidden layers and neurons associated with each of them. Consequently,
an architecture search was carried out across a set of 15 possibilities in which the model took 2 to 3
hidden layers each consisting of 8 to 64 neurons.
Once the model no longer appeared to be underfitting and the architecture was fixed, two Grid-
Searches were performed to estimate the best possible combination of hyperparameters. First, a
GridSearch to estimate the number of epochs, FTG and PODR, which also impact the other two
hyperparameters presented in equations C.6 and C.7, MTF and the buffer size respectively. Once
these hyperparameters had been established, a second GridSearch was performed to set the learning
rate and the L2 rate. The values studied for each hyperparameter are described in table C.2.2.

Model Training Hyperparameters Range values
Number of Epochs [75, 125, 175, 225]

FTG [200, 500, 800, 1000]
PODR [20%, 40%, 60%, 80%]

Learning Rate [2e-4, 7e-4, 2e-3, 7e-3, 2e-2]
L2 Rate [1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3]

Table C.2.2: Values of the multiple hyperparameters considered for the two GridSearches

There were 64 simulations per algorithm for the first GridSearch and 35 for the second. To compare
performances, only the 10 best simulations were retained for each GridSearch. To do so, the last
value of the corrected QD score presented in equation B.6 and from an uncertain environment, was
used to evaluate the actual performance of the algorithms, as presented in section B.3.1 [6, 22, 23].
The objective is to maximize such a metric, thus retaining only the 10 simulations with the highest
corrected QD score. Additional simulations have identified hyperparameter values not necessarily
belonging to the combinations defined in table C.2.2, whose final values are specified in table C.2.1.

In parallel with this search for hyperparameters, a data pre-processing method was tested, namely
Z-score standardization. This method is designed to be more robust to potential outliers than
min-max normalization, and above all, it enables different features to be brought together on the
same scale. Here, 3 features are considered for an MBME algorithm and 6 for an MBMEUQ algo-
rithm, corresponding either to fitness and BD values or to the parameters of the Gaussian distribution
associated with the latter.

CHAPTER C. DESIGN AND CONTRIBUTION Page 30 of 66



The idea is to normalize the data stored in the buffer, i.e. the scores assigned to the solutions by
the scoring function, and to retain the µ and σ parameters of each score to denormalize the model’s
predictions after being trained. Theoretically, this method aims to facilitate and improve model
learning by positioning features on the same scale and with a similar distribution: N (0, 1).
This method is presented in equation C.8.

Z-Score Standardization: yScore
Standardized, i =

yScore
i −µScore

D

σScore
D

(C.8)

yScore
i : Environment evaluation for the i-th individual and corresponding score

µ
Score
D : Mean of the score obtained via buffer D before splitting it for model training

σ
Score
D : Std of the score obtained via buffer D before splitting it for model training

Unfortunately, this method did not produce convincing results. Unlike the other mechanisms, i.e.
reset, uncertainty quantification and sampling, this data pre-processing is not a central element
of the project in terms of results. As a consequence of these results and to favour a more in-depth
analysis of the 3 other mechanisms, this standardization proposal has been discarded.
However, it’s important to bear in mind that other normalization or pre-processing methods are avail-
able and may be worth exploring.

To conclude, it is possible to extend the resource allocation formalism introduced by Flageat et al.
by distinguishing between the world of the environment and the world of the model when making
predictions or evaluations [23]. On the one hand, the global resources allocated to the algorithms
follow a sampling size comparison to make the comparison between algorithms entirely equitable.
On the other hand, when the model is used in each algorithm to predict new solutions, it follows a
batch size comparison to make comparisons between different sampling approaches fair.
Finally, it is important to establish the new hyperparameter corresponding to the number of subdivi-
sions, to take maximum advantage of the model’s performance and low cost at each prediction.
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C.3 Evaluation of the Performances

Now that the context is set for the new algorithms as well as each model and its training, let’s look at
the measurement of the different performances.
On the one hand, the performances of the algorithm to compare different approaches, and on the
other, the performances of the model to ensure that its predictions and training are appropriate to
the uncertain environment and the expected solutions.

The metrics used are those introduced in section B.2.1 and used by Berthier et al.: QD score, max
fitness and coverage [1]. Both the uncorrected and corrected versions of each of these metrics
will be available to measure the true performance of the different algorithms [6, 22, 23].
Moreover, two new metrics are introduced for MBMEUQ algorithms via equations C.9 and C.10.
In the same way as the QD score, these new metrics take into account performance via the uncertainty
value, while also taking into account coverage via the sum of cells occupied by a solution [2, 3].
However, unlike the QD score, the aim is to minimize these new metrics.

1. Uncertainty Fitness Score (UFS):

UFS(C) =
NC

∑
n=1

σ
f

n (C.9)

2. Uncertainty BD Score (UBS):

UBS(C) =
NC

∑
n=1

σ
BD
n with σ

BD
n =

σBDx
n +σ

BDy
n

2
(C.10)

NC : Number of cells occupied by an individual in container C

σ
f

n : Fitness uncertainty (std) of the n-th solution occupying a cell in container C

σ
BDx
n : X position BD uncertainty (std) of the n-th solution occupying a cell in container C

σ
BDy
n : Y position BD uncertainty (std) of the n-th solution occupying a cell in container C

σ
BD
n : Mean BD uncertainty (std) of the n-th solution occupying a cell in container C

In addition to the corrected metrics, the QD score loss metric introduced in section B.3.1 and equa-
tion B.8 is studied. Indeed, QD score is considered to be the main metric in this research project for
defining whether one algorithm is better than another.

Regarding model evaluation, it is pertinent to look at two different cases to understand the training
quality of the model and its effectiveness, namely (1) the last testing where the model is theoreti-
cally the most effective in its predictions, and (2) all the generations where the model is used without
being re-trained.
Through this report, the analysis focuses mainly on the second case with all generations rather than
the first one with the last model test at the last generation. Indeed, the set of generations where the
model is used without being re-trained is much more representative of the model’s behaviour during
simulation.
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In this way, multiple ancillary studies have been implemented to confirm that the model is cor-
rectly trained and that its predictions are consistent both (1) during generations dedicated to train-
ing the model and (2) between generations of training. The studies are the following:

1. A loss study during training and testing to ensure that the model is neither underfitting nor
overfitting.

2. A study of the error for fitness and BD values between model predictions and scoring func-
tion evaluations associated with the environment.

3. A statistical study of fitness and BD prediction errors to estimate the number of outliers.

4. Another study of error for uncertainty quantification for fitness and BD between model
predictions and scoring function evaluations. This study concerns only MBMEUQ Explicit and
MBMEUQW Explicit algorithms accessing uncertainty through standard deviations both via
the scoring function and the model.

5. A study of the comparison of predictions to check their distribution and better understand the
errors identified previously.

6. Another comparison study for the prediction of uncertainty associated with fitness and BD.
Like the previous comparison, it is used to understand the errors obtained previously. How-
ever, this comparison is only possible for the MBMEUQ Explicit and MBMEUQW Explicit
algorithms.

The study of errors and the comparison of uncertainties can not be carried out for algorithms
using the implicit sampling approach. Indeed, uncertainties are not provided by the scoring function
when it evaluates a solution, as reminded by table C.0.1

For predictions outside the generations, the average error is calculated to have only one point per
generation and make the graph more readable, while giving a general idea of the performance of the
model during the simulation. The calculation of the error is described in equation C.11.

Average Absolute Error: AAE Score(x,y) =
1
|B|

|B|

∑
i=1

|xScore
i − yScore

i | (C.11)

B : Batch size used by the model to generate solutions at each generation

xScore
i : Model prediction for the i-th individual and corresponding score

yScore
i : Environment evaluation for the i-th individual and corresponding score

On the one hand, this makes it possible to check whether the model is correct, thanks to its training
and error curves, and on the other hand it also makes it possible to identify where the model is
lacking, both with regard to training periods and predictions, thanks to comparison figures.
To conclude, this is a double check, confirming or questioning the performances obtained with
each algorithm. The algorithms are compared via the environment and task introduced in chapter D,
and the results and their analysis are proposed in chapter E.
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Algorithm 2 Model-Based MAP-Elites Algorithm
Initialize randomly a container C
Initialize parameters of the neural network NN
Initialize the state of the optimizer Opt
Initialize an empty buffer D
for Generation = 1 until Max Generation Gmax do

Select a population P (parents) from the container C using a selection operator
Generate new individuals I (offspring) from the population P using an alteration operator
if Generation ≤ First Training Generation then

for each individual i in I do
Evaluate the scores Senvironment(i) of individual i via the scoring function
Add individual i and Senvironment(i) to the container C
if Size of D < Max Size Dmax then

Add individual i and Senvironment(i) at the end of the buffer D
else

Remove first individual from the buffer D
Add individual i and Senvironment(i) at the end of the buffer D

else
for each individual i in I do

Predict the scores Smodel(i) of individual i via the neural network NN
Add individual i and score Smodel(i) to the container C
Evaluate the scores Senvironment(i) of individual i via the scoring function
if Size of D < Max Size Dmax then

Add individual i and score Senvironment(i) at the end of the buffer D
else

Remove first individual from the buffer D
Add individual i and Senvironment(i) at the end of the buffer D

if Generation == Training Generation or Generation == Last Generation then
Split the buffer D into a training dataset Dtrain and a test dataset Dtest
for Epoch = 1 until Max Epoch Emax do

for Batch = 1 until Max Batch Bmax from Dtrain do
Calculate the value and gradient of the training loss Ltrain, ∇Ltrain
Update the state of the optimizer Opt based on ∇Ltrain
Update parameters of the neural network NN based on the new state of the optimizer Opt

Calculate the average training loss of all batches Ltrain
for Batch = 1 until Max Batch Bmax from Dtest do

Calculate the test loss Ltest
Calculate the average test loss of all batches Ltest

return C, NN, Ltrain, Ltest ,
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Chapter D

Experimental Setup
In this research project, the environment studied corresponds to the simulation of a robotic arm made
up of N joints, and the objective is to reach multiple positions on a 2D plane by controlling the angle
of each joint. To consider the impact of noise on the algorithms and their performance, two tasks
will be used to compare the different approaches proposed in this project and in the literature: (1) a
deterministic robotic arm and (2) an uncertain version of the same arm.
However, it is important to remind that the main task corresponds to the uncertain arm as this
project is mainly concerned with uncertainty quantification and non-deterministic environments. Hence
the design of the algorithms and a more in-depth study of the results for the case of the uncertain en-
vironment as specified in chapters C and E respectively.

For the rest of the study, the arm configuration consists of 8 joints. This choice simplifies the complex-
ity of the task, thereby avoiding prolonged time simulations and the necessity of significant compu-
tational resources. Additionally, this environment has been previously used in the literature, allowing
for a more comprehensive comparison of the performances of multiple algorithms [1, 6, 23, 62].
It is also important to remind that this project relies primarily on the use of the library developed by
Lim et al., namely QDax [58]. This library, written in JAX, considerably reduces simulation times
for QD algorithms.

The graphical representation of the redundant arm task is shown in figure 5.

Figure 5: Diagram showing the robotic arm with its 8 joints in black and end effector in red.

The genotype used corresponds to the angular position of each joint, originally [0;2π] then nor-
malized between [0;1]. Similarly, the BD, which represents the final 2D position of the arm end
effector after the last joint, is normalized between [0;1]. Finally, fitness is expressed as the negative
variance of all 8 joints, and the aim is to obtain zero fitness, not the highest when a solution is eval-
uated. For the uncertain version of this task, noise is artificially added to both the fitness and the BD
once a solution has been evaluated.
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The mathematical expressions of these different concepts are introduced through the D.1 to D.4 equa-
tions.

Genotype: θ⃗ = (θn)1≤n≤8 (D.1)

Fitness: f (⃗θ) =−V(⃗θ) =−1
8

8

∑
n=1

(θn − θ̄)2 (D.2)

Noise: ε fitness ∼ N (0, 0.01) and ε BD ∼ N (0, 0.05) (D.3)

Uncertain fitness: funcertain(⃗θ) = f (⃗θ)+ ε fitness (D.4)

θn : Angle of the n-th joint
θ̄ : Average of the 8 angles

To understand the usefulness and potential, and to compare the 8 contributions proposed through this
project, it is also important to define reference baselines. To this end, 2 benchmark algorithms are
used [1]:

1. MAP-Elites (ME), which is based on the work of Mouret et al. [28].

2. MAP-Elites-Sampling (MES), which is based on the work of Justesen et al. and Cantu-Paz
[21, 39].

To enable a fair comparison between the new algorithms and the results obtained by Berthier et al.
via the benchmarks algorithms, the same hyperparameters related to this environment and QD
algorithms are presented in table D.0.1 and used [1].

QD Hyperparameters
Tasks

Deterministic Arm Uncertain Arm

Number of Generations 3000
Type of the Grid Cartesian
Size of the Grid 100x100

Number of joints (DoFs) 8
Sampling size 512

Frequency of Update (Corrected Metrics) Every 10 Generations
Number of reevaluations (Corrected Metrics) 256

Fitness Noise None N (0, 0.01)
BD Noise None N (0, 0.05)

Table D.0.1: Set of hyperparameters considered for the QD algorithms respectively for the determin-
istic task and the uncertain task.

Now that the task has been presented, the proposed algorithms detailed and the various points of
comparison explained, let’s look at and analyze the results obtained in chapter E.
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Chapter E

Experimental Results
On top of the QDax library, this project uses Singularity introduced by Kurtzer et al. [63]. Singularity
makes it possible to create containers containing environments with packages, versions and all the
other tools needed for the code to function properly, thus making the project reproducible.
The complete source code is available here.

The results are analyzed in two parts: (1) a comparison of the best contribution with the two base-
lines in section E.1, with an in-depth analysis of the model used and the comparison with the
ground truth results of the deterministic environment, and (2) an ablation study in section E.2 to
study the impact of the different mechanisms proposed across the contributions.
Berthier et al. have re-demonstrated the importance of corrected metrics, to evaluate the "true" be-
haviour of algorithms and their true performance, particularly for uncertain environments [1]. As this
project is mainly concerned with the uncertain task of the robotic arm, uncorrected metrics will not
be studied, although they are presented in appendix B. Nonetheless, uncorrected repertoires will be
displayed to visualize the difference in the behaviour of MBQD approaches, without going into detail.

In addition, since the project is mainly concerned with the uncertain environment and the contributions
have been designed for the latter, it is mainly the associated metrics and repertoires that will be
analyzed. Unless otherwise stated in the analysis, the case of the deterministic task is not analyzed
in detail, but rather gives an idea of the behaviour of these MBQD approaches in a deterministic
environment. Indeed the proposed algorithms do not seek to address this issue, as it is not the main
objective of this research project.

E.1 Best-Case Contribution vs. Benchmarks Algorithms

Among the 8 contributions, the Model-Based MAP-Elites Uncertainty Quantification Wipe Ex-
plicit (MBMEUQW Explicit) algorithm is considered the best. Indeed, this algorithm offers the
highest QD score for the uncertain environment.

E.1.1 Overall Comparison

The results are displayed through the corrected metrics in figure 6 and the corrected repertoires in
figure 7. Also, the two new metrics UFS and UBS introduced in section C.3 are presented in figure
8. However, ME cannot be used as a baseline for these new metrics, as the algorithm does not
quantify uncertainty, unlike MES, which uses revaluations.
A summary of the different results is available in table E.1.1 and the calculation of the improvement
between two results given a specific metric is described in equation E.1:

Improvement: Imp =
New Value−Reference Value

Reference Value
(E.1)
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Figures 6b and 7b show that the MBMEUQW Explicit algorithm is better than the ME baseline but
not as good as the MES baseline. Table E.1.1 quantifies the extent to which the model stands out
from the benchmark algorithms.

Metrics
Algorithms

ME MES MBMEUQW Explicit

QD Score
4047.13 4798.36 4472.36

+18.56% +10.51%
−15.66% −6.79%

Max fitness 0.0017 0.0007 −0.0135

Coverage
42.15 50.54 48.94

+19.91% +16.11%
−16.60% −3.17%

UFS 50.35 48.79
UBS 251.90 243.95

Table E.1.1: Comparison of the different metrics between ME, MES and MEMBUQW Explicit with
the uncertain arm task. The white cells correspond to the final value (first line), the slightly shaded
cells correspond to the improvement over ME (second line) and the darker cells correspond to the
improvement over MES (3rd line). Black cells correspond to undefined results.

Whether concerning ME or MES, the results indicate that the difference in QD score is mainly ex-
plained by the quality of the solutions through the estimation of the set of fitnesses rather than by
the number of solutions through the set of BDs and therefore the coverage. Indeed, MBMEUQW
Explicit’s coverage is close to MES’s, yet the gap between the QD scores is greater. It demonstrates
that although MBMEUQW Explicit’s model proposes several solutions added to the repertoire close
to MES’s, the latter proposes a lower overall fitness estimate for the set of solutions identified
than MES. Similarly, MBMEUQW Explicit’s coverage is much higher than ME’s, but the gap be-
tween the QD scores is not as high, showing that although the model adds many more solutions to the
repertoire, the quality of these solutions is not necessarily as good as those proposed by ME. The
repertoires in figure 7b clearly illustrate this difference, particularly with ME and MES, where the
golden heart shape is visually identifiable, unlike the MBMEUQW Explicit repertoire, which is
much less marked visually by this shape, but more by its space-covering aspect.
The problem of estimating fitness can also be seen in the max fitness metric. Even though the latter
only considers the maximum value and therefore only represents a single point in a set, we note that
MBMEUQW Explicit has a maximum value that is very different from ME and MES. This suggests
that the problem of estimating fitness applies not to a single solution but to a large population
of solutions in the repertoire, confirming the previous analysis of the QD score and the repertoire
obtained.

Concerning the new metrics, UFS and UBS, it’s important to remember that we’re trying to min-
imize them. If one looks at the table E.1.1, it can be seen that MBMEUQW Explicit offers lower
metrics than MES. However, one must be careful, as these metrics take into account both the un-
certainty estimate and the number of solutions in the repertoire, in the same way as the QD score.
MBMEUQW Explicit offers fewer solutions than MES, due to its slightly lower coverage, which
may explain the new metrics with lower values. It’s therefore natural to think that, for an equivalent
number of solutions, MBMEUQW Explicit might not be as good in terms of these new metrics, and
would therefore have higher values. However, it is important to note that the model seems to work
well at first sight in terms of uncertainty quantification since the behaviour and values obtained are
very close to the values derived from MES and the scoring function for this uncertain environment.

CHAPTER E. EXPERIMENTAL RESULTS Page 38 of 66



In conclusion, the MBMEUQW Explicit approach outperforms the first ME baseline but struggles
with the second MES baseline. Overall, the model seems to learn well from the various jumps and
the growth in coverage and QD score over 3000 generations. The model seems to perform better at
estimating a solution through its BD than at estimating its quality through fitness.
This is where a more in-depth analysis of the model and its behaviour comes in, to refute or confirm
the various interpretations established through this analysis.

(a) Comparison plot of the corrected metrics with the deterministic arm task.

(b) Comparison plot of the corrected metrics with the uncertain arm task.

Figure 6: Comparison plot of QD score (left), max fitness (middle) and coverage (right). This
comparison is made between the 2 reference algorithms ME, MES, and the best contribution MB-
MEUQW Explicit. Results are obtained via 5 replications, shaded areas correspond to standard
deviations and dark lines correspond to medians.
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(a) Comparison plot of the corrected repertoires with the deterministic arm task.

(b) Comparison plot of the corrected repertoires with the uncertain arm task.

Figure 7: The comparison is made between the 2 reference algorithms ME (left), MES (middle) and
the best contribution MBMEUQW Explicit (right). Each repertoire corresponds to the simulation
with the highest QD score among the 5 replications. The colour scale is standardized across the
various figures.

Figure 8: Comparison plot of 2 new corrected metrics: (1) UFS (left) and (2) UBS (right) with
the uncertain arm task. The comparison is made between (1) MES and (2) MEMBUQW Explicit.
Results are obtained via 5 replications, shaded areas correspond to standard deviations and dark
lines correspond to medians.
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E.1.2 In-Depth Model Analysis

To confirm or refute the analysis carried out in section E.1.1, it is important to explore other results.
For this reason, the performance of the model associated with the MBMEUQW Explicit algorithm is
studied in greater detail, using the criteria set out in section C.3.

Before interpreting other results, it is important to check the model’s learning. Although the model
seems to be learning correctly according to the jumps and growth in the metrics figure 6b, a double
confirmation is essential. For this purpose, the learning curves are shown in figure 9.

Figure 9: Graph showing the evolution of the learning curves of the model for the uncertain arm
task with the MBMEUQW Explicit algorithm. In total, the model trained on 875 epochs spread over
5 training sessions.

Fortunately, the model’s learning curves testify to correct learning. The NLL decreases and is
minimized as training progresses. The model shows a slight case of overfitting, but this remains
negligible given the training, especially as it can be explained by the PODR hyperparameter,
which retains a certain percentage of the old data for the next training and model test. Finally, this
slight overfitting may also confirm the fact that the model learns correctly, due to the design of
the algorithm, although this may seem counter-intuitive.

Now that we know that the model is correctly trained, let’s take a look at its predictions and compare
them with the environment’s evaluations. Figures 10 to 13 are complementary.
The errors in figure 12 confirm that the model performs less well in predicting fitness than in pre-
dicting BD. This is shown by a progressive decrease in the error between the model and the scoring
function for both BD and the associated uncertainty. On the contrary, the error seems to stagnate
for fitness predictions and to increase slightly for fitness uncertainty predictions. Thus, as the
model trains, it becomes better and more confident in the predictions of the BD, whereas it stagnates
but becomes slightly less confident about fitness.
Another important point is the distribution of these errors, shown in figure 13. In addition to the fact
that the BD error seems to be decreasing, unlike the fitness error, it is important to compare this er-
ror with the scale of predictions and possibilities. As a result of normalization, BD varies between
0 and 1, and fitness is mostly contained between −0.10 and 0. For BD, we find a median error of
0.128, while for fitness we find a median error of 0.019, which when brought back to the expected
scale represents a median error percentage of 12.8% and 19% respectively. These percentages
confirm once again that the model is worse at predicting fitness than BD, explaining the results
and confirming the analysis in section E.1.1.
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Figure 11 shows a comparison of the model’s predictions with the environment’s scoring function.
The model seems to cover a large area of the expected space, although some spaces are less acces-
sible, namely the extremities of the circle. However, it’s important to note that these results are ob-
tained after removing the outliers. The number of outliers for fitness and BD predictions respectively
is 7.76% and 13.41% for a total of 127680 predictions. However, this difference in the proportion of
outliers can be explained by (1) the possibility set with a wider domain for the BD and also by (2)
the fact that the prediction error associated with the BD is still quite high and dispersed before
the second training of the model, as shown in figure 12a.
Outliers can be explained by the fact that the model (1) is wrong or (2) has not been able to train
on similar data. The first case corresponds to poor training, while the second to no training on the
data. Given the previous results, metrics as well as errors and learning curves, case (2) seems to be
the most predominant. This is explained by the design of the model with an MTF of 500. Over 500
generations, it is likely that the model will need to evaluate several solutions that it has never yet
encountered through training, due to this low training frequency. To limit this number of outliers,
it may be worthwhile to force an algorithm design where the model trains with a higher frequency
while adjusting the other hyperparameters.

Finally, even if these results show that it is possible to improve the model mainly via its fitness
predictions but also from the BD where outliers and error nevertheless remain high, they also confirm
the analysis proposed in section E.1.1.

Figure 10: Comparison plots of the uncertainty BD predictions (left) and uncertainty fitness pre-
dictions (right) between MBMEUQW Explicit model predictions and scoring function evaluations
with the uncertain arm task. These graphs are obtained via the predictions at each generation
when the model is not trained.

Figure 11: Comparison plot (left) and difference plot (right) between MBMEUQW Explicit model
and scoring function evaluations for the BD with the uncertain arm task. These graphs are obtained
via the predictions at each generation without model training and after removing outliers.
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(a) Prediction errors of fitness and BD by the MBMEUQW Explicit model.

(b) Prediction errors of fitness and BD uncertainty quantification by the MBMEUQW Explicit model.

Figure 12: Average errors in predictions related to BD (left) and fitness (right) between the MB-
MEUQW Explicit model and the scoring function in the case of the uncertain arm. These errors are
calculated for each generation when the model is not trained.

Figure 13: Violin diagrams of BD error (left) and fitness error (right) between MBMEUQW Ex-
plicit model predictions and scoring function evaluations with the uncertain arm task. These graphs
represent the distribution of errors obtained at each generation when the model is not trained and
after removing outliers. The width of the figure indicates the proportion of elements for each error
value, and the centre bar shows both the median and interquartile ranges.
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E.1.3 Comparison Between Model and Scoring Functions

Sections E.1.1 and E.1.2 focus on the behaviour of the MBMEUQW Explicit algorithm and its results,
mainly in an uncertain environment. Although the results are not as good as the second baseline, MES,
they are still promising and interesting to explore. For further analysis, this section compares
the deterministic scoring function with (1) the model used in the uncertain environment with
MBMEUQW Explicit algorithm and (2) the non-deterministic scoring function.
The principle is simple: (1) the uncertain environment is used, (2) the model is trained in the same
way as for all the results obtained in sections E.1.1 and E.1.2, and (3) the solutions are also evaluated
by the scoring function associated with the deterministic environment.
Thus, a new scoring function is introduced. It performs exactly the same operations as the old
one, with the added benefit of evaluating solutions through its deterministic version even in an
uncertain environment. The results can be seen in figure 14.

These results add another dimension to the analysis of the model’s performance and interest. The
results show that the model underperforms the scoring function for the uncertain environment. This
lack of performance is reflected in (1) a higher error and (2) a more dispersed distribution. At
present, the model is less interesting than the simple scoring function, but these results demonstrate
the value of using a model.
Indeed, even if the model performs less well individually, its strength lies in the fact that it can
evaluate more solutions at a lower cost. As a reminder, this corresponds to the hyperparameter
number of subdivisions, introduced in section C.2. Although the median error associated with the
model is around 6 times greater than that associated with the uncertain scoring function, for both BD
and fitness, the metrics do not show such a discrepancy, as shown in figure 6b or the repertoires in
figure 7b. Using the model via MBMEUQW Explicit "only" represents a drop of 3.17% and 6.79%
respectively in coverage and QD score as shown in table E.1.1 compared to using the scoring function
via the MES baseline.

In conclusion, while the model still shows high errors compared to the uncertain scoring function, the
metrics do not show such a discrepancy. This shows the value of using a model. For the moment,
the model is less interesting, but the results are promising. They suggest that if a model were more
properly trained, probably with a slightly adapted design and more appropriate hyperparameters,
then the error associated with predictions would decrease all the more. As a result, the model would
identify a higher diversity of solutions, as well as a higher quality of the latter, probably enabling
it to beat the second baseline.
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(a) Comparison of the average fitness errors.

(b) Comparison of the average BD errors. The BD associated with the X position is on the left, and the BD
associated with the Y position is on the right.

Figure 14: Comparison of prediction errors between (1) the model from MBMEUQW Explicit
and the deterministic scoring function (orange), and (2) the deterministic and uncertain scoring
functions (blue).
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E.2 Ablation Study

Now that the best algorithm has been presented, along with its performance against baselines, let’s
look at the other contributions. The comparison of the other contributions is done through an ablation
study. For this purpose, 3 mechanisms will be studied, namely (1) the repertoire reset mechanism,
(2) the choice of model quantifying or not the uncertainty and finally (3) the sampling approach
used to train the model, respectively in sections E.2.1, E.2.2 and E.2.3.
Analysis and interpretation are provided by the results shown in figures 15 to 19.

E.2.1 Reset Mechanism

An important point to identify right away is the behaviour of the different contributions without the
repertoire reset. The corresponding metrics are shown in figure 16a and the repertoires in figure 18b.
The different metrics seem to show a similar behaviour between MBME and MBMEUQ Explicit
and a second similar behaviour between MBME and MBMEUQ Implicit. According to these
metrics, the explicit sampling approach seems more interesting than the implicit sampling approach,
regardless of the model design. However, if we look at the visualization of results through repertoires,
we can see that the design of these algorithms without reset is misleading.

First of all, repertoires are built in a similar way both between MBME and MBMEUQ Explicit and
between MBME and MBMEUQ Implicit. If we look at the behaviour of these same algorithms, but
this time with the repertoire reset, it is clear that the behaviour is no longer at all similar between
the algorithms, either from the point of view of the repertoires or of the available metrics figure 16b.
As stated earlier, this is due to a misleading or poorly adapted design of the MBQD approaches
without reset. According to the design introduced in chapter C, all the new contributions work as
follows: (1) use the scoring function to feed both the buffer and the repertoire, (2) use the model to
feed the repertoire and the scoring function to feed the buffer from the FTG introduced in section C.2.
The value of this FTG given in table C.2.1 for the different algorithms shows that it represents 1/6
or 1/3 of the simulation for algorithms with the implicit and explicit approaches respectively. So the
scoring function is used for 1/6 or 1/3 of the simulation, i.e. 0.256×106 or 0.512×106 environment
steps, and from figure 16b where these instants are easily identifiable thanks to the reset, we can see
that (1) the QD score is higher at this instant than at the final value for the implicit cases and that (2)
the QD score has reached around 98% of its final value for the explicit cases.
This behaviour shows that the model plays little or no part in identifying relevant solutions and
adding them to the repertoire, which is the opposite of the expected behaviour that prompted the
implementation of these MBQD approaches. This is justified by the fact that the solutions identi-
fied by the scoring function, during its period of use to populate the repertoire, are either lucky or
over-perform compared to the majority of solutions predicted by the model despite its multiple
trainings, preventing the latter from being truly effective.

Finally, this first ablation of the reset mechanism shows that it is essential to consider the impact of
the model through the proposed design. Consequently, the 4 contributions without this reset will
not be analyzed further, since they are misleading and the results obtained depend mainly on the
scoring function and not on the model. Similarly, this justifies the superiority of approaches with
explicit sampling irrespective of the model design, since the 1000-generation explicit approach is
better in this uncertain environment than the 500-generation implicit approach, particularly regarding
the curves of the benchmark algorithms ME and MES.
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E.2.2 Model Design

Following the repertoire reset analysis in section E.2.1, only 4 of the 8 contributions are analyzed to
understand the algorithm design in more detail. The 4 contributions are MBMEW and MBMEUQW
Explicit as well as MBMEW and MBMEUQW Implicit.
To provide a quantifiable comparison between the different algorithms, a summary of the results is
given in table E.2.1, in the same way as table E.1.1. This time, the improvement defined in equation
E.1 is not made regarding the two baselines, but from one algorithm to its equivalent with the other
model choice.

Metrics
Algorithms

MBMEW Exp MBMEUQW Exp MBMEW Imp MBMEUQW Imp

QD Score
2539.05 4472.36 331.8895 4397.39

+76.14% +1224.96%
−43.23% −92.45%

Max fitness 0.00089 −0.01346 0.00061 0.00066

Coverage
31.05 48.94 4.73 50.12

+57.62% +959.62%
−36.55% −90.56%

UFS 48.79 49.97
UBS 243.95 249.82

Table E.2.1: Comparison of the different metrics between MBMEW and MBMEUQW algorithms
with the uncertain arm task. The white cells correspond to the final value (first line), the slightly
shaded cells correspond to the improvement over non-UQ algorithms (second line) and the darker
cells correspond to the improvement over UQ algorithms (3rd line). Black cells correspond to
undefined results.

The repertoire reset gives an idea of the true performance of the proposed model concerning its pre-
dictions and its performance in identifying good solutions and filling the repertoire. Unlike the results
without this reset, where performance seemed independent of the chosen model, as shown in figure
16a, table E.2.1 and figure 16b show a real split in model behaviour and performance. Whether
for the explicit or implicit approach, there is a performance gap when using repertoire reset, be-
tween a deterministic model that doesn’t quantify uncertainty and a probabilistic model that
quantifies the uncertainty associated with each of the scores.
Indeed, the probabilistic model proposing a representation of the distribution of scores performs much
better than the deterministic model predicting only the score of solutions. In the explicit case, the QD
score shows an improvement of 76.14%, and in the implicit case, the improvement is even greater at
1224.96%. The improvement in this QD score is closely linked to the improvement in coverage.
This means that the major difference in model design is reflected mainly through an improvement
in BD predictions rather than fitness, although the repertoires in figure 18b also show a great im-
provement in fitness estimation for MBMEUQ algorithms.
Despite correct learning of the deterministic models not modelling the distribution as shown by
the learning curves in appendix C, results reflect that this design is not adapted to an uncertain
environment. On the other hand, in the deterministic case, the opposite behaviour is observed, with
models performing better when they don’t quantify uncertainty, as shown in figure 15.

In conclusion, this ablation of model selection demonstrates the importance of selecting a proba-
bilistic model that represents the distribution of scores and therefore quantifies their uncertainty
in uncertain environments. Consequently, algorithms offering neither uncertainty quantification nor
repertoire reset will not be studied in section E.2.3.
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E.2.3 Sampling Approach

As a result of the two studies proposed in sections E.2.1 and E.2.2, only 2 of the 8 contributions
are analyzed, namely MBMEUQW Explicit and MBMEUQW Implicit, to measure and observe
differences in behaviour according to the sampling approach chosen.
Once again, the results are presented and quantified in tabular form, E.2.2.

Metrics
Algorithms

MBMEUQW Explicit MBMEUQW Implicit

QD Score
4472.36 4397.39

−1.68%
+1.70%

Max fitness −0.01346 0.00066

Coverage
48.94 50.12

+2.41%
−2.35%

UFS 48.79 49.97
UBS 243.95 249.82

Table E.2.2: Comparison of the different metrics between (1) MBMEUQW Explicit and (2) MB-
MEUQW Implicit with the uncertain arm task. The white cells correspond to the final value (first
line), the slightly shaded cells correspond to the improvement over explicit sampling approach
(second line) and the darker cells correspond to the improvement over implicit sampling approach
(3rd line). Black cells correspond to undefined results.

The two algorithms produce almost identical results. The main difference comes from the max fitness
metric, which is not the most representative.
However, it is interesting to note that despite a higher QD score of 1.70%, the Explicit approach
has a lower coverage of 2.35%. This shows that the explicit approach is better in terms of fitness
estimation than the implicit approach, which performs better in estimating BD. This interpretation
is visually identifiable in figure 18b with the golden heart shape more distinguishable with the
explicit case, while the implicit case offers more solutions but of lower quality.
From the point of view of uncertainty quantification, the two algorithms appear similar in terms of
performance. As indicated in section E.1.1, it is not obvious which algorithm is better for uncertainty
quantification, via UFS and UBS, given that they are proportional to coverage and that we aim to
minimize them. However, we note that the orders of magnitude are also very similar concerning
the coverage obtained, confirming similar behaviour with respect to uncertainty quantification
despite the slight differences in value.
If we disregard the final results and focus on the behaviour of each algorithm during simulation,
the MBMEUQW Explicit algorithm shows a real progression as the model is trained, whereas the
MBMEUQW Implicit algorithm shows mostly stagnation. According to figure 16b, MBMEUQW
Implicit achieves higher performance faster than MBMEUQW Explicit, but this performance remains
more or less constant once achieved. In contrast, the MBMEUQW Explicit algorithm demonstrates
real added value over the generations following each model training, outperforming the main
metric for comparing the algorithms, namely the QD score obtained by MBMEUQW Implicit at the
end of the simulation. Thus, implicit sampling seems to saturate to a sub-optimal point, while explicit
sampling exceeds it, leading to a favouring of MBMEUQW Explicit behaviour.

In conclusion, the explicit sampling approach is more interesting and enables the algorithms to
perform better and behave more promisingly than the implicit sampling approach in an uncertain
environment. Consequently, we can deduce that in our case the model performs better if it trains on
better quality data, even if this means losing quantity.
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E.2.4 Global Comparison and Summary with Baselines

To summarize this ablation study, let’s look at the 3 mechanisms, their results and key interpretations.

1. The repertoire reset mechanism

With the design proposed for these 8 new contributions, this is the most essential tool, not in
terms of performance, but to enable a fair comparison of the different algorithms. Indeed,
MBQD approaches aim to use a model to identify solutions and add them to the repertoire.
Without this mechanism, the algorithms contribute to the repertoire mainly through the
scoring function and not through the model, establishing a false point of comparison about
the performance of the 8 algorithms. This comparison is all the more unequal following the
analysis indicating that the model proposes a higher error in its predictions than the scoring
function of the environment.

2. The model design

Two model choices were presented in this project, with one deterministic model seeking to
predict the exact scores associated with a solution, and a probabilistic model seeking instead
to identify the distribution associated with the scores of a solution, while quantifying the un-
certainty. It is this latter choice of model that has the greatest impact on the performance
obtained with the different algorithms. Indeed, in the case we’re interested in, namely an un-
certain environment, it is the model that quantifies uncertainty that clearly stands out,
whereas in the deterministic case, it is the deterministic one.

3. The sampling approach

This last criterion defines the type of data the model is trained on, thus defining the quantity
and quality of the data supplied to it. Contrary to the choice of model, this last criterion does
not have a significant impact on the model’s final performance, but it does have an impact on
its evolution and behaviour during the simulation. Indeed, the explicit approach not only
delivers higher results but also proposes more promising behaviour than the implicit one.

It’s important to point out that the hyperparameter number of subdivisions has been selected from the
set [5,30,50,80,100] to maximize the QD score. Even if the selection established in table C.2.1 gives
the impression of being unfair between the different contributions, on the contrary, it reinforces the
analysis of the results established so far and demonstrates the interest of (1) using the reset to
limit elitism and (2) using a probabilistic model to have better predictions and lower errors.

In addition to the comparison through metrics and repertoires, a new analysis is proposed through
loss metrics and more particularly the QD score losses proposed in figure 20. As a reminder, this new
metric, presented in section B.3.1 and equation B.8, represents the extent to which an estimator
is wrong in its prediction between actual and predicted performance, so between corrected and
uncorrected predictions. The aim is to minimize this drop.
We can see that the 8 contributions have a median loss lower than ME’s 54.55%, but higher than
MES’s 37.84%. We need to be careful and also consider the previous results, particularly the metrics
since this graph might lead us to believe that the MEMBW Explicit contribution is the most interesting
after MES. According to this loss alone, this is the case, except that if we go back to the metrics in
figure 16, we remember that this is clearly not the best-performing contribution, unlike MEMBUQW
Explicit. Therefore, we’re only interested in the two best contributions, which are the MEMBUQW
algorithms with the two sampling approaches.
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As well as having a higher QD score, the explicit approach has a median QD score loss of 45.74%,
lower than that of the implicit approach, which is 50.64%. A final point of interest is that the
MEMBUQW Explicit algorithm offers some smaller overestimates than MES throughout a sim-
ulation, as shown by the boxplot extremity at around 20%, although the median loss remains higher.
Once again, this confirms the interest and promising behaviour of using a model through the
MBMEUQW Explicit algorithm.

In conclusion, the approaches presented demonstrate the interest of the 3 proposed mechanisms. They
have different purposes and impact the algorithms at different levels: comparison, performance
and behaviour. Moreover, even if the second MES baseline isn’t beaten by the best contribution,
MBMEUQW Explicit, the results of the latter remain close and its behaviour is also promising.
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(a) Comparison plot between the 2 baselines and the 4 MBME(UQ) versions without repertoire reset.

(b) Comparison plot between the 2 baselines and the 4 MBME(UQ) versions with repertoire reset.

Figure 15: Comparison plot of 3 corrected metrics: QD score (left), max fitness (middle) and
coverage (right) with the deterministic arm task and 10 algorithms. Results are obtained via 5
replications, shaded areas correspond to standard deviations and dark lines correspond to medians.

(a) Comparison plot between the 2 baselines and the 4 MBME(UQ) versions without repertoire reset.

(b) Comparison plot between the 2 baselines and the 4 MBME(UQ) versions with repertoire reset.

Figure 16: Comparison plot of 3 corrected metrics: QD score (left), max fitness (middle) and cov-
erage (right) with the uncertain arm task and 10 algorithms. Results are obtained via 5 replications,
shaded areas correspond to standard deviations and dark lines correspond to medians.
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(a) Comparison plot of 10 uncorrected repertoires with the deterministic arm task. The colour scale is not
standardized across the various figures.

(b) Comparison plot of 10 corrected repertoires with the deterministic arm task. The colour scale is stan-
dardized across the various figures.

Figure 17: The comparison is made between the 2 reference algorithms ME and MES at the top, the
4 versions of MBME Explicit in the middle, and the 4 versions of MBME Implicit at the bottom.
A version corresponds (1) to the choice of model, with or without UQ, and (2) to the use or non-use
of repertoire reset. Each repertoire corresponds to the simulation with the highest QD score among
the 5 replications.
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(a) Comparison plot of 10 uncorrected repertoires with the uncertain arm task. The colour scale is not
standardized across the various figures.

(b) Comparison plot of 10 corrected repertoires with the uncertain arm task. The colour scale is standard-
ized across the various figures.

Figure 18: The comparison is made between the 2 reference algorithms ME and MES at the top, the
4 versions of MBME Explicit in the middle, and the 4 versions of MBME Implicit at the bottom.
A version corresponds (1) to the choice of model, with or without UQ, and (2) to the use or non-use
of repertoire reset. Each repertoire corresponds to the simulation with the highest QD score among
the 5 replications.
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Figure 19: Comparison plot of 2 new corrected metrics: (1) UFS (left) and (2) UBS (right) with the
uncertain arm task. The comparison is made between (1) MES and (2) the 4 MBMEUQ versions.
Results are obtained via 5 replications, shaded areas correspond to standard deviations and dark
lines correspond to medians.

Figure 20: Boxplots of the QD score loss between the 2 benchmark algorithms and the 8 new con-
tributions. Losses and distributions are calculated across the 5 replications for the entire simulation
rather than just the final value.
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Chapter F

Conclusion
To conclude this research project, let’s recall the various key points as well as the associated
progress and remarks, before looking at future perspectives to pursue the development and re-
search proposed through this project. These points are discussed in sections F.1 and F.2 respectively.

F.1 Progress and Discussion

In this research project, we proposed and compared several model-based approaches associated
with a QD algorithm, MAP-Elites. These approaches combine 3 mechanisms, namely (1) the
ability to reset and re-evaluate a repertoire through the model, (2) the model design to quantify
or not the uncertainty of solutions, and (3) 2 sampling methods to modify the model’s training data.
The first aim of such model-based approaches is to capture the relationship between inputs and
outputs, i.e. genotype and scores respectively, following the evaluation of a solution, despite noise
and therefore in non-deterministic environments. The second aim of such approaches is to improve
the data-efficiency of QD algorithms, in particular by achieving better or similar performance to the
scoring function, but with a reduced number of evaluations.

Due to the design of the contributions and the objectives of this project, new hyperparameters and
metrics have been introduced. These include the number of subdivisions hyperparameter, indi-
cating the number of additional batches the model can evaluate, to be fair in terms of resources to
the scoring function’s evaluation of a single batch. Two metrics are also proposed, UFS and UBS,
quantifying the uncertainty associated with the scores of the solutions identified by the model.
The results show that the use of the repertoire reset is essential for a fair comparison of algorithms.
In addition, this repertoire reset (1) corrects model errors that accumulate from generation to gen-
eration after each model training and (2) limits the elitism of MAP-Elites. The results also show
that for an uncertain environment, the probabilistic model that quantifies uncertainty is the most
efficient and suitable. Finally, the explicit sampling approach shows better results and better
model behaviour within the simulation. The algorithm resulting from the combination of these three
criteria, Model-Based MAP-Elites Uncertainty Quantification Wipe Explicit, manages to beat the
first MAP-Elites baseline but performs slightly less well than the second MAP-Elites-Sampling
baseline. Although the model performs less well than the scoring function in its predictions, its "free"
evaluation feature enables it to partially make up for this shortcoming. As a result, the model iden-
tifies a large collection of solutions, almost identical to the second baseline, but with slightly poorer
performance estimates.

This project highlights the challenge of designing MBQD algorithms and adjusting the set of
hyperparameters to enable the model to learn correctly and regularly about the operation of an
uncertain environment. Even if the second baseline is not beaten, the difference between the metrics
of the proposed algorithm and the second baseline remains small, especially for coverage. Moreover,
the evolution of the model shows promising behaviour and results. Thus, it is assumed that if the
hyperparameters related to model training and algorithm design were better tuned, then the results
would be all the more convincing and potentially beat this second baseline.
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F.2 Prospects for Future Research

This research project, which combines QD algorithms, and MB approaches with uncertainty quantifi-
cation and sampling approaches, suggests the emergence of new areas of research and new consider-
ations.

First of all, it is important to note that MES is a good baseline for the task under consideration.
Indeed, keeping the mean over numerous reevaluations is an efficient method, given that the noise
applied to the scores follows a Gaussian distribution. On top of that, the environment has no dy-
namics, since there are no transitions or state-action spaces. Solution scores are obtained directly
after genotype evaluation, with no intermediate process between input and output. These two
considerations are linked to the structure of (1) the noise and (2) the environment, and they amplify
the efficiency of MES while reducing that of MBQD algorithms.
Therefore, it could be interesting to compare the 2 baselines and the 8 contributions through new envi-
ronments featuring dynamics such as Halfcheetah from the Brax open-source library introduced by
Freeman et al. [64]. The interest of the model is to train and accumulate information as the simulation
progresses. In theory, the presence of dynamics will demonstrate the under-efficiency of MES and its
explicit sampling which does not consider past information unlike the model, and therefore indepen-
dently re-evaluates a solution based on previous observations. Proposing comparisons of baselines
and contributions with new distributions of noise could also be of interest.

This project is also interested in the quantification of uncertainty but does not use it explicitly. How-
ever, the quantified uncertainty is mixed between aleatoric and epistemic uncertainty so it is important
to distinguish one from the other. To this end, it may be worth proposing an approach based on
an ensemble of models. This ensemble would quantify epistemic uncertainty from its different
predictions of each model for the same solution, then aleatoric uncertainty would be deduced from
the total uncertainty.
Following this quantification, it could be interesting to propose conditions on the addition, reevalua-
tion or emission of solutions, taking into account the level of epistemic uncertainty.

Finally, the contributions proposed in this project use the scoring function and therefore the envi-
ronment for a number of generations, rather than using the model to feed the directory all the time.
Firstly, it might be more relevant to move to a full MBQD approach by using only the model to
feed the repertoire, even from the first generations where the model has not necessarily been trained.
On the one hand, this would make the MBQD approach fairer, and on the other, it would enable us
to (1) compare all contributions, even those without repertoire reset, and (2) realize and potentially
quantify the impact of repertoire reset, which limits the elitism of MAP-Elites.
In addition to this modification linked to the use of the model, it could be interesting to modify the
buffer feed by identifying the most promising solutions and allowing the model to train on them. To
do this, as soon as a solution is added to the repertoire, a new score must be associated with it: the
repertoire improvement (RI). This score comes from the emitter introduced by Fontaine et al. [33].
It is described in equation F.1.

Repertoire Improvement: RI = | Fitness Old Value −Fitness New Value | (F.1)

Finally, the operation of this adapted MBME algorithm is shown in figure 21.
The solutions added to the buffer correspond to those with the highest RI. This mechanism explicitly
considers fitness through the RI expression, and implicitly considers BD, since only solutions added
to the repertoire at each generation are taken into account.
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Figure 21: This diagram depicts an adapted version of MBME(UQ) algorithms after initialization.
Contrary to the proposed contributions in this project, the idea is to always use the model to feed the
repertoire. In addition, to populate the buffer, solutions are selected based on a new score: repertoire
improvement (RI). The solutions with the highest RI, which are added to the repertoire with each
generation, are re-evaluated by the scoring function to fill the buffer D , which serves as a training
and test set for the model. In addition, the number of solutions the model evaluates at each generation
depends on the hyperparameter number of subdivisions, and the 3 mechanisms proposed throughout
this project are also applicable to this new version.
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A Ethics Checklist

Figure 22: Questions and answers on the ethical and societal implications of this research project.
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B Uncorrected Metrics

(a) Comparison plot between the 2 baselines and the 4 MBME(UQ) versions without repertoire reset.

(b) Comparison plot between the 2 baselines and the 4 MBME(UQ) versions with repertoire reset.

Figure 23: Comparison plot of 3 uncorrected metrics: QD score (left), max fitness (middle) and
coverage (right) with the deterministic arm task and 10 algorithms. Results are obtained via 5
replications, shaded areas correspond to standard deviations and dark lines correspond to medians.

(a) Comparison plot between the 2 baselines and the 4 MBME(UQ) versions without repertoire reset.

(b) Comparison plot between the 2 baselines and the 4 MBME(UQ) versions with repertoire reset.

Figure 24: Comparison plot of 3 uncorrected metrics: QD score (left), max fitness (middle) and
coverage (right) with the uncertain arm task and 10 algorithms. Results are obtained via 5 replica-
tions, shaded areas correspond to standard deviations and dark lines correspond to medians.
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C Learning Curves

(a) MBMEW Explicit learning curves.

(b) MBMEW Implicit learning curves.

Figure 25: Learning curves for the uncertain arm task with MBMEW algorithms.
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